
Native DEX

Smart Contract Audit

NAT-001

Prepared for Native Labs

Dr. Nadim Kobeissi

Symbolic Software

August 23, 2023

ii

Abstract

This audit report provides the results of a comprehensive security evalu-
ation of Native Decentralized Exchange (DEX), a technology developed
by Native Labs. Native DEX aims to democratize access to DEX creation,
thereby enhancing the cryptocurrency swap experience for users and pro-
viding a comprehensive approach to token management for project teams.
The technology is designed to address the inefficiency of heavy reliance
on exchanges in the crypto ecosystem, thereby improving scalability. Na-
tive DEX acts as an invisible layer, allowing projects to build their own
in-app DEX, eliminating the need for intermediaries, and enhancing the
transaction process between projects and their respective communities.

The audit will provide an in-depth assessment of the inherent design, im-
plementation, and operational effectiveness of Native’s DEX technology,
further scrutinizing its potential to realize the targeted future of cryptocur-
rency transactions. The audit will focus on technical validation, security
analysis, performance evaluation, code quality inspection, interoperability
review, evaluation of liquidity models, and user experience audit. The au-
dit will cover core contracts, liquidity pool contracts, and other contracts
of interest.

Contents

1 Executive Summary 1

1.1 Target Summary . 1
1.2 Static Analysis Results . 2
1.3 Code Review Results . 3
1.4 Additional Analysis & Conclusion 4

2 Target Overview 6

2.1 Analysis Target Summary . 7
2.1.1 Workflow . 7

2.1.1.1 Pool Setup . 7
2.1.1.2 Swap . 7

2.1.2 Smart Contracts . 8
2.1.2.1 Core Contracts 8
2.1.2.2 Liquidity Pool Contracts 9

2.2 Analysis Motivation . 10
2.3 Audit Scope . 11

2.3.1 High Priority . 11
2.3.2 Lower Priority . 11

2.4 Statement of Work . 11
2.5 Work Schedule . 13
2.6 Operational Notes . 13

3 Static Analysis 14

3.1 NAT-001-001 Immediately Overwritten Variables 14
3.2 NAT-001-002 Redundant Condition Check in Contract 15

4 Code Review 17

4.1 NAT-001-003StackDepth IssuesUnderStandardCompilerCon-
figurations . 17

4.2 NAT-001-004Outdated Dependencies with Patched Vulnerabil-
ities . 19

iii

Contents iv

4.3 NAT-001-005Unncessary Gas Cost fromOn-Chain HashOper-
ation . 20

5 Additional Analysis & Conclusion 22

5.1 Performance Evaluation . 23
5.2 Code Quality Inspection . 23
5.3 Interoperability Review . 24
5.4 On-chain and Off-chain Analysis 25
5.5 Evaluation of Liquidity Models 26
5.6 User Experience Audit . 27
5.7 Conclusion . 27

6 About Symbolic Software 29

References 30

List of Acronyms

AMM Automatic Market Maker 1
dApp Decentralized Application 6
DEX Decentralized Exchange ii
EOA Externally Owned Account 7
PMM Professional Market Maker 1

v

1

Executive Summary

For the busy executive who just doesn’t have the time!

This Executive Summary quickly collates together a list of relevant data points
from this report.

1.1 | Target Summary

For more information, please review §2.

This report provides an overview and analysis of Native Labs’s product, the Na-
tive DEX. The Native is an infrastructure that enables third-party entities to
create their own decentralized exchange, democratizing access to DEX creation
and improving the crypto swap experience. The objective of the audit is to evalu-
ate the design, implementation, and operational effectiveness of theNative DEX
technology.

TheNative DEX operates by allowing projects to build their in-app DEX, elimi-
nating intermediaries and enhancing transaction processes between projects and
their communities. Its design removes the need for third-party exchange fees
and resolves fragmentation in user experience, with an efficiency comparable to
centralized exchanges.

This audit will examine the smart contract repository provided by Native, com-
prising a range of pricing and liquidity models. It allows for both on-chain and
off-chain pricing via Automatic Market Maker (AMM)s and Professional Mar-
ket Maker (PMM)s respectively. The evaluation will cover the workflow, which
includes the pool setup and swap process, and the various smart contracts that
make up the Native DEX system.

The audit’s primary motivations include technical validation, security analysis,
performance evaluation, code quality inspection, interoperability review, on-
chain andoff-chain analysis, evaluationof liquiditymodels, and auser experience
audit.

1

Part 1: Executive Summary 1.2. Static Analysis Results

The scope of the audit covers specific contracts of high and lower priority as
indicated by the report. The audit was expected to kick off on July 18th and
proceed with tasks such as audit planning, manual code review, static analysis,
functional testing, and security assessment, with an expected delivery deadline
of August 2nd, 2023.

1.2 | Static Analysis Results

For more information, please review §3.

In the audit ofNativeDeX’s smart contracts, a static analysiswas performedusing
Slither, a specialized framework for Ethereum smart contracts. The objective of
this static analysis is to affirm the security and reliability of the DeX, bolstering
its reputation within the blockchain ecosystem.

Two principal findings were identified:

1. Immediately Overwritten Variables (NAT-01-001): Multiple instances
of immediatelyoverwrittenvalueswere found in theExternalSwapRouterUp-
gradeable contract’s swap1inch function. This situation, which could
lead to superfluous gas cost, less readable code, or unanticipated behav-
ior, involves variables such as amount, minReturn, amount_scope_0, and
minReturn_scope_1. It is advised to revisit these sections of the code to
ensure the immediate overwrites are deliberate and avert potential vulner-
abilities in the contract.

2. Redundant Condition Check in Contract (NAT-01-002): In the Na-
tivePool contract, a redundant condition check was discovered, where
the _fees[i] variable was unnecessarily validated to be greater than or
equal to zero. This is unwarranted as _fees[i], an unsigned integer, can’t
be negative. Although not posing a security risk, this redundancy adds
unnecessary complexity and can lead to confusion. It is recommended
to simplify the condition check by eliminating the superfluous check to
enhance the legibility of the code without affecting the intended function-
ality.

2

Part 1: Executive Summary 1.3. Code Review Results

1.3 | Code Review Results

For more information, please review §4.

This part of the report highlights the findings from a thorough code review of the
Native DEX smart contracts. The review focused on identifying potential issues
thatmight compromise the functionality, security, and efficiency of the contracts.
The discovered issues were categorized based on severity and potential impact,
and each was furnished with a summary, detailed description, and actionable
recommendations.

The review addressed issues such as stack depth limitations demanding custom
compiler configurations, outdated dependencies with patched vulnerabilities,
and unwarranted gas costs from on-chain hash operations. The primary aim of
the review is to provide actionable recommendations for enhancing code quality
and security, in addition to identifying potential vulnerabilities. Subsequent
sections delve deeper into each finding for amore comprehensive understanding.

� Stack Depth Issues Under Standard Compiler Configurations (NAT-
01-003): Several components in Native’s DEX smart contract code ex-
ceeded Solidity’s stack depth limit, demanding a custom and unsupported
compiler configuration. The issue is commonly found in large contracts
with complex functions and nested calls. We provided a thorough refactor-
ing of three smart contracts to mitigate the risk of “stack depth exceeded”
errors during compilation. This was achieved by extracting parts of the
code into separate functions, reducing the number of variables in the func-
tion scope, and optimizing the code to use fewer stack slots.

� OutdatedDependencies with Patched Vulnerabilities (NAT-01-004):
A routine check of smart contract dependencies revealed outdated ver-
sionsof the@openzeppelin/contracts and@openzeppelin/contracts-
upgradeable packages. These older versions have had critical vulnerabil-
ity disclosures, impacting the contract’s security. The recommended ac-
tion is to update the smart contract dependencies to their latest versions.

� UnnecessaryGasCost fromOn-ChainHashOperation(NAT-01-005):
The NativePool, NativePoolFactory, and NativeRouter contracts have
unnecessary on-chain keccakhashing for certain constants. This practice is
inefficient due to the computational overhead and gas costs. Theproposed
solution is to replace these on-chain computationswith precomputedhash
values, enhancing contract efficiency and readability.

3

Part 1: Executive Summary 1.4. Additional Analysis & Conclusion

1.4 | Additional Analysis & Conclusion

For more information, please review §5.

This report concludeswith an analysis of related aspects of theNativeDEX smart
contract stack. smart contracts. Six major aspects were evaluated: performance,
code quality, interoperability, on-chain and off-chain transaction handling, liq-
uidity models, and user experience.

� The performance of the Native DEX contracts was satisfactory, especially
in terms of gas usage, scalability, and transaction speed. Although improve-
ments can be made in gas usage optimization, scalability remains a key
focus as transaction volumes increase.

� Despite some inconsistencies in coding style and sprawling function def-
initions, the code quality was satisfactory, aided significantly by compre-
hensive documentation. A more consistent coding style and refactored
functions are recommended to improve readability and maintainability.

� The contracts exhibited robust interoperability capabilities, efficiently in-
teracting with both internal and external entities. The team should con-
tinue to enhance this interoperability, particularly as the DeFi ecosystem
evolves.

� The on-chain and off-chain transactions of the Native DEX contracts are
effectively managed. Regular audits and reviews are recommended to en-
sure the accuracy, security, and effectiveness of these transactions.

� Theliquiditymodels providedbyNative are effective anduser-friendly, but
users should be informed about the potential risks, such as impermanent
loss.

� The user experience audit showed that the contracts provide a positive
user experience, with intuitive functions, accessibility, and transparency.
Continuous improvements in these areas are recommended.

The conducted evaluations and reviews of the Native DEX smart contracts en-
compassed performance measurement, code scrutiny, interoperability assess-
ment, on-chain and off-chain transaction analysis, liquidity model examination,
and user experience auditing. This broad analysis has led to a comprehensive
understanding of the operational effectiveness, code standard, interoperability,
transaction processing, liquidity models, and user interaction of these contracts.

4

Part 1: Executive Summary 1.4. Additional Analysis & Conclusion

In the aspect of performance, the smart contracts presented acceptable gas us-
age, scalability, and transaction velocity metrics. The code analysis identified a
number of inconsistencies in coding style and excessive complexity in function
definitions, but the provided documentation was found to sufficiently compen-
sate for these issues, leading to a positive assessment of the code quality. The
smart contracts have proven to be robust in terms of interoperability, with suc-
cessful interaction with both internal and external components.

The analysis of on-chain and off-chain transactions indicated a well-organized
system that manages both transaction types, underpinning both the accuracy
and security of transactions. The liquidity models offered by Native were found
to be efficient and user-oriented. However, it is recommended that users fully
understand the potential risks before participating in liquidity provision. The
user experience audit indicates that the smart contracts have been designed with
an emphasis on user accessibility, and the resulting transparency and intuitive
functionality contribute to the overall user experience.

The results of this audit suggest that the Native DEX smart contracts have been
developed with a significant degree of consideration and exactness. This study’s
findings should contribute to a better understanding of the integrity and reliabil-
ity of the Native DEX platform for users and other relevant parties.

5

2

Target Overview

Native Labs produces the Native DEX [1], a technology that aims to allow third-
parties to “be their own DEX”. This audit report evaluates the functionalities and
effectiveness of Native DEX, a technology that aims to improve the cryptocur-
rency landscape by facilitating and democratizing access to DEX creation. The
solution aims to enhance the cryptocurrency swap experience for users while
providing a comprehensive approach to tokenmanagement for project teams. By
creating a balanced environment between decentralized and centralized finance,
it aims to pave the way for exponential growth in the app layer.

Historically, the crypto ecosystem has demonstrated a heavy reliance on ex-
changes, with users often resorting to third-party intermediaries to transact with
Decentralized Application (dApp)s and liquidity providers. Native DEX is de-
signed to address this inefficiency, thereby improving scalability in the crypto
space.

Acting as an invisible layer, Native allows projects to build their own in-appDEX,
eliminating the need for intermediaries and enhancing the transaction process
between projects and their respective communities. This technology eradicates
the need for third-party exchange fees and the fragmentation associated with
user experience, while ensuring efficiency comparable to centralized exchanges.

This audit will provide an in-depth assessment of the inherent design, imple-
mentation, and operational effectiveness of Native’s DEX technology, further
scrutinizing its potential to realize the targeted future of cryptocurrency transac-
tions.

6

Part 2: Target Overview 2.1. Analysis Target Summary

2.1 | Analysis Target Summary

Native’s provided smart contract repository [2] contains a well-defined scope
which acts as the basis for this audit engagement’s target summary:

2.1.1 | Workflow

Native is an infrastructure that supports different kinds of pricing and liquidity
models. For pricingmodels, Native supports both on-chain pricing (via AMMs)
and off-chain pricing (PMMs). For liquidity source, Native supports private
liquidity source (Externally Owned Account (EOA)), public liquidity source
(liquidity pool contracts). Native also provides a variety of liquidity pool con-
tracts to facilitate community-based liquidity sourcing. The workflow of Native
is as follows:

2.1.1.1 | Pool Setup

1. The project owner deploys a NativePool, decides on the pricing model,
sets the fees, and determines other pool configurations.

2. The project owner is required to provide liquidity support to the Native-
Pool by granting allowance to the NativePool contract. This can either be
through the project’s own treasury EOAwallet or via a smart contract. Ad-
ditionally, Native provides a variety of liquidity pool contracts to facilitate
community-based liquidity sourcing.

3. Each NativePool includes a signer, which is a wallet used to sign orders.
Only orders that have been signed can be executed on Native pools. This
serves as a protective measure for the treasury, particularly for off-chain
pricing. By default, the signer is created and hosted by Native, however,
project owners also have the option to operate their own signer.

2.1.1.2 | Swap

1. The trader grants allowance to the NativeRouter and interacts with the
Native off-chain API to receive the signed order.1

1An example for calling the API can be found here: https://docs.native.org/

native-dev/native-v1/guide

7

https://docs.native.org/native-dev/native-v1/guide
https://docs.native.org/native-dev/native-v1/guide

Part 2: Target Overview 2.1. Analysis Target Summary

2. The Native off-chain router reviews various liquidity sources, selects the
route based on price, and returns the signed order. For hops using off-
chain pricing (e.g., the PMM pricing model), the off-chain router obtains
a quote from themarketmaker, fills in the amountIn and amountOut in the
order, and then signs it.

3. Native incorporates a widget fee feature. Authorized partners can register
the fee recipient with Native off-chain, and subsequently charge traders a
fee for using their swap widget. The widgetFee signer, hosted by Native,
signs the order to ensure the authenticity of the fee recipient and the fee
rate.

4. Armed with the signed order, the trader can invoke the NativeRouter

functions exactInput (for multi-hop) or exactInputSingle (for single
hop) to execute the transaction on-chain.

5. The NativeRouterdecodes the order and calls the NativePool forNative-
supported liquidity fromprojects orother liquidity sources suchasUniswap
v3, 1inch, and PancakeSwap.

2.1.2 | Smart Contracts

TheNative smart contract repository contains the following contracts of interest:

2.1.2.1 | Core Contracts

�

F
IL
E

NativeRouter.sol : Receive the order from trader with the 2 func-
tions exactInput or exactInputSingle. Verify the order signature, pro-
cess the widget fee and call corresponding liquidity source according to
the order.

�

F
IL
E

ExternalSwapRouterUpgradable.sol : Implement the external liq-
uidity source thatNativeRouter could call. IncludingPancakeSwap,Uniswap
v3 and 1inch.

�

F
IL
E

PeripheryPayments.sol : Include the logic for payment related to Na-
tiveRouter and also wrapping, unwrapping ETH.

�

F
IL
E

NativePoolFactory.sol : Deploy the new NativePool with the con-
figurations using createNewPool.

8

Part 2: Target Overview 2.1. Analysis Target Summary

�

F
IL
E

NativePool.sol : Define the pairs it supports and pricing model it
uses. swap is called by NativeRouter. Treasury (EOA wallet or smart
contract) will need to give allowance to this contract to support the swap.

2.1.2.2 | Liquidity Pool Contracts

These contracts are designed to accumulate liquidity from the community, in-
centivized by transaction fees and additional rewards provided by the project
owner through the staking of LP tokens. Assets are deposited into these con-
tracts, which should subsequently grant allowance to the corresponding Native-
Pool. Native provides different types of liquidity models for project owners to
choose from based on their specific needs.2

�

F
IL
E

NativeTreasury.sol : A foundational contract intended to be inher-
ited by other liquidity pools.

�

F
IL
E

NativeFixedPriceLiquidityPool.sol : This liquidity model is ap-
propriate for pegged assets or certain in-game tokens for which the project
ownerwishes to establish a fixed price. The value of LP tokens is calculated
based on this fixed price.

�

F
IL
E

NativeUniswapV2LiquidityPool.sol : This liquiditymodel operates
similarly to the UniswapV2 model.

�

F
IL
E

NativePMMLiquidityPool.sol : This liquidity model is utilized for
collaboration with PMMs. It incorporates specific characteristics to fa-
cilitate PMM operation, such as withdrawal limits and the capability for
PMMs to rebalance assets for hedging and liquidity management. This
model is less permissionless and requires a higher degree of trust in the
project owner and the market maker.

�

F
IL
E

NativeLPRewards.sol : This contract enables the project team to de-
ploy rewards for LP token staking, serving as an incentive for liquidity
providers. Project owners can decide which LP tokens to incentivize and
what rewards tokens to offer.

2Additional information can be found at https://docs.native.org/native-dev/

native-v1/smart-contracts/liquidity-pools.

9

https://docs.native.org/native-dev/native-v1/smart-contracts/liquidity-pools
https://docs.native.org/native-dev/native-v1/smart-contracts/liquidity-pools

Part 2: Target Overview 2.2. Analysis Motivation

2.2 | Analysis Motivation

The primary motivations behind conducting this audit include:

1. Technical Validation: Confirmation of the technical functionality and
integrity of the smart contracts to ensure they operate as expected and
meet the objectives set by Native Labs.

2. Security Analysis: Identification of potential security vulnerabilities in
the smart contract design and implementation, including but not limited
to re-entrancy attacks, front-running, and overflow errors.

3. Performance Evaluation: Assessment of the operational efficiency of
the smart contracts, focusing on aspects such as gas usage, scalability, and
transaction speed.

4. Code Quality Inspection: Review of the code quality in terms of read-
ability, maintainability, and adherence to established solidity and smart
contract best practices.

5. Interoperability Review: Examination of the interaction and integration
capabilities of the smart contracts with both internal (other contracts in
the system) and external (third-party contracts and services) entities.

6. On-chain andOff-chain Analysis: Investigation of the handling of both
on-chain and off-chain transactions, verifying the accuracy, security, and
effectiveness of these operations.

7. Evaluation of Liquidity Models: Evaluation of the different liquidity
models provided by Native, focusing on their effectiveness, usability, and
potential risks.

8. User Experience Audit: Analysis of how the smart contracts impact the
user experience in terms of ease of use, accessibility, and transparency.

10

Part 2: Target Overview 2.3. Audit Scope

2.3 | Audit Scope

The only contracts that are in scope for this audit are the contracts listed below,
excluding any concerns regarding centralization or malicious administrator risk.

2.3.1 | High Priority

The following contracts are of high priority for this audit:

�

F
IL
E

NativeRouter.sol

�

F
IL
E

ExternalSwapRouterUpgradable.sol

�

F
IL
E

PeripheryPayments.sol

�

F
IL
E

NativePoolFactory.sol

�

F
IL
E

NativePool.sol

�

F
IL
E

NativePriceDecoupledLiquidityPool.sol

�

F
IL
E

NativePMMLiquidityPool.sol

�

F
IL
E

NativeLPRewards.sol

2.3.2 | Lower Priority

The following contracts are of lower priority for this audit:

�

F
IL
E

NativeTreasury.sol

�

F
IL
E

NativeUniswapV2LiquidityPool.sol

�

F
IL
E

NativeFixedPriceLiquidityPool.sol

2.4 | Statement of Work

Symbolic Software’s proposed privacy audit of the Native Contracts for Native
Labs consists of one deliverable: a detailed report covering the following ele-
ments:

1. Audit Planning: This involves understanding the scope of the project and
setting up audit objectives and procedures. Also, preliminary discussions
with the Native DEX team to understand their requirements and expecta-
tions.

11

Part 2: Target Overview 2.4. Statement of Work

2. ManualCodeReview: Review the provided smart contracts for structural
flaws, bugs, code quality, compliance with coding standards, and possible
security issues. This includes a thorough review of core contracts, liquidity
pool contracts, and any other contracts of interest.

3. StaticAnalysis: Utilize tools likeEchidnaor similar toperformautomated
testing of the smart contracts. Identify vulnerabilities, check code cover-
age, verify functionalities, and test properties.

4. Functional Testing: Ensure that each function of the smart contracts
works as intended. Verify the behavior of functions under both normal
and adverse conditions.

5. WorkflowTesting: Examine the flow of transactions and interactions be-
tween smart contracts, and verify they align with the intended design.

6. Security Assessment: Rigorously analyze the system for potential secu-
rity flaws such as re-entrancy attacks, unchecked external calls, race condi-
tions, and arithmetic overflows or underflows.

7. GasOptimization Analysis: Examine the gas consumption of different
functions and transactions. Suggest optimizations if necessary.

8. Risk Assessment: Identify and assess potential risks in the system. Sug-
gest possible mitigations.

9. Formulation of Audit Report: After completing the audit, compile find-
ings, observations, and recommendations into a comprehensive audit re-
port.

10. Post-Audit Support: Discuss the report with the Native DEX team, pro-
vide clarifications if needed, and assist them in implementing the recom-
mendations if required.

12

Part 2: Target Overview 2.5. Work Schedule

2.5 | Work Schedule

The following is an overview of the schedule through which this audit will be
conducted. Tasks often overlap, so this is not an exact overview:

� July 18: Kickoff call, audit proposal for client review, audit preparation.

� July 19 – July 29: Audit planning, manual code review, static analysis, dy-
namic analysis, functional testing, workflow testing, security assessment,
gas optimization analysis, risk assessment.

� July 30 – August 2: Report writeup, editing and delivery.

2.6 | Operational Notes

Anycryptographicfilehashesmentioned in this report are16-byteBLAKE3hashes
generatedusing version1.4.0of theb3sum3 command: b3sum -l 16 filename.txt

3https://crates.io/crates/b3sum

13

https://crates.io/crates/b3sum

3

Static Analysis

In the process of auditing the smart contracts for theNativeDeX,wehave chosen
to conduct a static analysis using Slither [3], a static analysis framework specifi-
cally designed for Ethereum smart contracts. By leveraging Slither’s capabilities,
we aim to provide a thorough and accurate static analysis of Native’s smart con-
tracts. This will help ensure the security and reliability of the DeX, contributing
to its overall trustworthiness in the blockchain ecosystem.

3.1 | NAT-001-001 Immediately OverwrittenVari-

ables

Severity: Informational
During our static analysis of the smart contracts, we identified an issue concern-
ing immediately rewritten values in the

F
IL
E

ExternalSwapRouterUpgradeable

contract. This issue pertains to the swap1inch function, where certain variables
are written twice in immediate succession, which could lead to wasted gas cost,
less readable code, or in the worst case, unexepcted behavior.

� amount: written twice in the swap1inch function. Initially, it is assigned
a value through the abi.decode function at line #276-279. Immediately
after, at line #280, it is rewritten with the value of sellerTokenAmount.

� minReturn: written twice in immediate succession. It is first assigned a
value through the abi.decode function at line #276-279, and then imme-
diately overwritten with the value of buyerTokenAmount at line #281.

� amount_scope_0: first assigned a value through the abi.decode function
at line #286-289, and then immediately overwrittenwith the value of sell-
erTokenAmount at line #290.

14

Part 3: Static Analysis 3.2. NAT-001-002

� minReturn_scope_1: first assigned a value through the abi.decode func-
tion at line #286-289, and then immediately overwritten with the value of
buyerTokenAmount at line #291.

•
Recommendation: Declare variables once

These instances of immediately rewritten values could lead to potential is-
sues in the contract’s execution. It is recommended to review these sections
of the code to ensure that the logic is correct and that the immediate over-
writes are intentional. If they are not, it could lead to unexpected behavior
or potential vulnerabilities in the contract.

3.2 | NAT-001-002 Redundant Condition Check

in Contract

Severity: Informational
In the

F
IL
E

NativePool contract, there’s a redundant condition check for_fees[i]
being greater than or equal to 0, which is unnecessary as _fees[i] is an unsigned
integer and cannot be negative. This redundancy, while not a security risk, adds
unnecessary complexity and could cause confusion, so it’s recommended to re-
move this check to simplify the code.

During our static analysis of the NativePool contract, we identified an issue con-
cerning a redundant condition check. This issue is located at line 280 in the

F
IL
E

NativePool smart contract.

The code snippet in question is as follows:
1 require(

2 (_fees[i] >= 0) && (_fees[i] <= 10000),

3 ”Fee should be between 0 and 10k basis points”

4);

The variable fees[i] is of type uint (unsigned integer), which means it can-
not hold negative values. Therefore, the condition check (_fees[i] ^>= 0) is
redundant as _fees[i]will always be greater than or equal to 0 by definition.

This redundancy does not pose a security risk, but it does add unnecessary com-
plexity to the code and could potentially lead to confusion for developers or
auditors reviewing the contract in the future.

15

Part 3: Static Analysis 3.2. NAT-001-002

•

Recommendation: Simplify condition check

Simplify the condition check by removing the redundant check. The re-
vised code should look as follows:

1 require(

2 _fees[i] <= 10000,

3 ”Fee should be between 0 and 10k basis points”

4);

5

This change will make the code cleaner and easier to understand, without
altering the intended functionality.

16

4

Code Review

This chapter presents the findings of a detailed code review of the Native DEX
smart contracts. The review aims to identify and address potential issues in the
code that could affect the functionality, security, and efficiency of the contracts.
The findings are categorized based on their severity and potential impact. Each
finding is accompanied by a brief summary, a detailed description of the issue,
and a recommendation for resolving the issue.

The review covers a range of issues, from stack depth issues that require custom
compiler configurations, outdated dependencies with patched vulnerabilities, to
unnecessary gas costs from on-chain hash operations. The goal of this review is
not only to identify potential problems but also to provide actionable recommen-
dations to improve the overall quality and security of the code. The following
sections will delve into each finding, providing a comprehensive understanding
of the issues at hand and the proposed solutions.

4.1 | NAT-001-003 StackDepth IssuesUnder Stan-

dard Compiler Configurations

Severity: Low
TheNative DEX smart contract code was found to exceed Solidity’s stack depth
limit in several components, necessitating the use of a custom compiler configu-
ration. To address this, Symbolic Software provided thorough code refactoring
across three smart contracts to reduce function complexity and the number of
local variables, aiding in adhering to the Solidity compiler’s limit and mitigating
the risk of “stack depth exceeded” errors during compilation.

Several components in Native’s DEX smart contract code exceeded Solidity’s
stack depth limit upon compilation, requiring the use of a custom and unsup-

17

Part 4: Code Review 4.1. NAT-001-003

ported compiler configuration to compile the code. The problem arises when
the Solidity compiler tries to allocate more than 1024 stack slots, which is the
maximum limit. This issue is prevalent in large contracts with complex functions
and nested calls. The issue may be resolved by refactoring the code to reduce
the complexity of functions and the number of local variables, which will help
to keep the stack depth within the limit set by the Solidity compiler.

Stack depth issues are generally addressed through refactoring the code to reduce
the complexity of functions and the number of local variables. This is achieved
by extracting parts of the code into separate functions, reducing the number of
variables in the function scope, and optimizing the code to use fewer stack slots.
These changes help to keep the stack depth within the limit set by the Solidity
compiler.

In order to help address this issue, Symbolic Software providedNativeDEXwith
a thorough refactoring spanning three smart contracts. These changes are aimed
at reducing the complexity of the contracts and thus mitigating the risk of “stack
depth exceeded” errors during compilation.

Here’s a breakdown of the changes in each contract:

�

F
IL
E

ExternalSwapRouterUpgradeable :

– This contract has undergone significant refactoring. The changes
are primarily focused on reducing the complexity of the functions
swapPancake, swapUniswapV3, and swap1inch.

– Themain change is the extraction of a common piece of code into a
new function handleEthCase. This function handles the case where
the user calls with ETH, reducing code duplication and making the
code more readable.

– Additionally, the code has been restructured to use fewer local vari-
ables, which can help avoid stack depth issues. For example, the buy-
erTokenAmount and sellerTokenAmount variables are nowdeclared
and assigned in a more compact way.

– The emitSwap1Inch function has been extracted from swap1inch to
further reduce the complexity of the latter.

�

F
IL
E

NativePool :

– The initialize function of this contract has been simplified by
replacing multiple parameters with a single NewPoolConfig struct.
This reduces the number of local variables and arguments, which can
help avoid stack depth issues.

18

Part 4: Code Review 4.2. NAT-001-004

– The NewPoolConfig struct includes all the necessary parameters for
initialization, making the function call more straightforward and re-
ducing the risk of errors.

�

F
IL
E

NativePoolFactory : Similar to

F
IL
E

NativePool , the createNewPool
functionhas been simplifiedby replacingmultiple parameterswith a single
NewPoolConfig struct. This reduces the number of local variables and
arguments, which can help avoid stack depth issues.

In summary, these changes aim to reduce the complexity of the contracts and
the number of local variables used, which can help avoid “stack depth exceeded”
errors during Solidity compilation.

• Recommendation: integrate changes provided by Symbolic Software

Simply integrate our changes documented above, and you’re good to go!

4.2 | NAT-001-004 Outdated Dependencies with

Patched Vulnerabilities

Severity: Low
TheNativeDEX smart contracts have been identified to utilize outdated versions
of the@openzeppelin/contracts and@openzeppelin/contracts-upgradeable
dependencies, which have documented critical vulnerabilities impacting specific
versions. These vulnerabilities could lead to a range of issues including incorrect
computations, and are rectifiable via an update to the latest versions, ensuring
patched vulnerabilities.

A routine checkof smart contract dependencies has revealed that theNativeDEX
contracts pin outdated dependency versions of the @openzeppelin/contracts
and@openzeppelin/contracts-upgradeable packages, some of which have since
had critical vulnerability disclosures. These vulnerabilities affect versions 3.2.0 to
4.9.1of@openzeppelin/contracts andall versionsup to4.9.1of@openzeppelin/contracts-
upgradeable. The identified issues are as follows:

� Incorrect Calculation: This issue could lead to incorrect computations
in the contracts.

19

Part 4: Code Review 4.3. NAT-001-005

� TransparentUpgradeableProxyClashingSelectorCalls: This issue could
prevent certain function calls frombeing correctly delegated in the context
of upgradeable contracts.

� GovernorCompatibilityBravoTrimmingProposalCalldata: This issue
could lead to the trimming of proposal calldata in the GovernorCompati-
bilityBravo contract.

� Governor Proposal Creation Frontrunning: This issue could allow an
attacker to block the creation of new proposals in the governor contract
by frontrunning.

� Merkle ProofMultiproofs Arbitrary Leaf Proving: This issue could al-
low an attacker to prove arbitrary leaves in specific Merkle trees.

•
Recommendation: update smart contract dependencies

For both packages, a fix is available and can be applied by running the npm
audit fix command. This command automatically installs any compati-
ble updates to vulnerable dependencies. Update the smart contract depen-
dencies to the latest versions, ensuring that all known vulnerabilities are
patched. This will help to ensure the security and reliability of the smart
contracts.

4.3 | NAT-001-005UnncessaryGas Cost fromOn-

Chain Hash Operation

Severity: Informational
The

F
IL
E

NativePool ,

F
IL
E

NativePoolFactory , and

F
IL
E

NativeRouter contracts
contain unnecessary on-chain keccak hashing for certain constants, which was
inefficient due to the computational overhead and gas costs. The issuemay be re-
solved by replacing these on-chain computations with precomputed hash values,
improving contract efficiency and readability.

During our review of the smart contracts, we identified an issue concerning un-
necessaryon-chainKeccakhashing in the

F
IL
E

NativePool ,

F
IL
E

NativePoolFactory ,
and

F
IL
E

NativeRouter contracts. This issue was found in the computation of
ORDER_SIGNATURE_HASH, INIT_SELECTOR, UPGRADE_SELECTOR, and EXACT_IN-

PUT_SIGNATURE_HASH:

20

Part 4: Code Review 4.3. NAT-001-005

1 // NativePool.sol:

2 bytes32 private constant ORDER_SIGNATURE_HASH =

3 keccak256(

4 ”Order(uint256 id,address signer,address buyer,address seller,address

↪→ buyerToken,address sellerToken,uint256 buyerTokenAmount,uint256

↪→ sellerTokenAmount,uint256 deadlineTimestamp,address caller,bytes16

↪→ quoteId)”

5);

6

7 // NativePoolFactory.sol:

8 bytes4 public constant INIT_SELECTOR =

9 bytes4(

10 keccak256(

11 bytes(

12 ”initialize((address,address,address,address,bool,bool,uint256[],

↪→ address[],address[],uint256[]),address)”

13)

14)

15);

16 bytes4 public constant UPGRADE_SELECTOR = bytes4(keccak256(bytes(”upgradeTo

↪→ (address)”)));

17

18 // NativeRouter.sol:

19 bytes32 private constant EXACT_INPUT_SIGNATURE_HASH =

20 keccak256(

21 ”NativeSwapCalldata(bytes32 orders,address recipient,address signer,

↪→ address feeRecipient,uint256 feeRate)”

22);

These constants are computedon-chain using the keccak256 function. However,
this computation is unnecessary and inefficient as these constants can be pre-
computed off-chain and hard-coded into the contract. This is because the values
being hashed are constant and do not change during the contract’s execution.

•
Recommendation: Use precomputed hash values

Use precomputed hash values for constants in the contract. This practice
improves the contract’s efficiency by reducing the computational overhead
and gas costs associated with on-chain hashing. It also simplifies the con-
tract’s code, making it easier to read and understand.

21

5

Additional Analysis & Conclusion

This concluding section of the report presents a detailed analysis of various as-
pects of the Native DEX smart contracts. The evaluation focuses on operational
efficiency, codequality, interoperability, handlingof on-chain andoff-chain trans-
actions, liquidity models, and user experience. Each section provides a compre-
hensive review and evaluation of the respective aspect, highlighting the strengths
and areas for improvement. The aim is to provide a holistic understanding of the
functionality, efficiency, and usability of the Native DEX smart contracts. The
evaluations are based on rigorous testing and analysis, ensuring an accurate and
objective assessment of the contracts. In this conluding section, we consider the
following additional aspects:

1. Performance Evaluation: Assessment of the operational efficiency of
the smart contracts, focusing on aspects such as gas usage, scalability, and
transaction speed.

2. Code Quality Inspection: Review of the code quality in terms of read-
ability, maintainability, and adherence to established solidity and smart
contract best practices.

3. Interoperability Review: Examination of the interaction and integration
capabilities of the smart contracts with both internal (other contracts in
the system) and external (third-party contracts and services) entities.

4. On-chain andOff-chain Analysis: Investigation of the handling of both
on-chain and off-chain transactions, verifying the accuracy, security, and
effectiveness of these operations.

5. Evaluation of Liquidity Models: Evaluation of the different liquidity
models provided by Native, focusing on their effectiveness, usability, and
potential risks.

6. User Experience Audit: Analysis of how the smart contracts impact the
user experience in terms of ease of use, accessibility, and transparency.

22

Part 5: Additional Analysis & Conclusion 5.1. Performance Evaluation

5.1 | Performance Evaluation

Evaluation: #

The performance evaluation of the Native DEX smart contracts was conducted
with a focus on operational efficiency, particularly in terms of gas usage, scalabil-
ity, and transaction speed. The contracts were tested under various conditions
to assess their performance in different scenarios. The gas usage of the contracts
was analyzed to identify any inefficiencies or areas for optimization. The scal-
ability of the contracts was evaluated by testing their performance under high
transaction volumes. The transaction speed was assessed by measuring the time
taken to execute various functions in the contracts.

The results of the performance evaluation indicated that the Native DEX con-
tracts are sufficiently efficient in terms of gas usage. While the findings discussed
in NAT-01-003 led to possible gas usage improvements, the contracts were
found to have already been optimized to minimize gas consumption, which con-
tributes to lower transaction costs for users. The contracts also demonstrated
scalability, maintaining consistent performance even under high transaction vol-
umes. The transaction speed was found to be satisfactory, with most functions
executing swiftly.

Recommendation: While the performance of the Native DEX smart contracts
is within reasonable best-effort range given the use case scenario, it is recom-
mended that the team continues to monitor and optimize gas usage, especially
in light of the evolving Ethereum gas price landscape. Regular performance
evaluations should be conducted to ensure that the contracts remain efficient
and cost-effective for users. Additionally, as the platform grows and transaction
volumes increase, scalability should remain a key focus to ensure consistent per-
formance.

5.2 | Code Quality Inspection

Evaluation: ##

Thecode quality inspection involved a comprehensive review of theNativeDEX
smart contracts. The contracts were evaluated in terms of readability, maintain-
ability, and adherence to established Solidity and smart contract best practices.
The code was examined for clarity and simplicity, with a focus on the use of clear
variable names, concise functions, and comprehensive comments. The main-

23

Part 5: Additional Analysis & Conclusion 5.3. Interoperability Review

tainability of the code was assessed by considering factors such as modularity,
reusability, and the ease of adding new features or making changes.

Upon inspection, it was observed that the functions within the contracts were
sometimes defined in a sprawling manner, and there was no single clear cod-
ing style maintained throughout the codebase. This lack of consistent style and
sprawling function definitions could potentially make the code harder to read
andmaintain. However, it’s important to note that despite these inconsistencies,
the provided documentation was comprehensive and well-structured, which
greatly facilitated understanding of the codebase.

The contracts, while not strictly adhering to a single coding style, were still found
to be reasonably well-structured and organized. The use of meaningful variable
names and the presence of comprehensive comments throughout the codebase
contributed to its readability. Despite the sprawling nature of some functions,
the code was modular and reusable, which enhances maintainability.

In conclusion, while there is room for improvement in terms of coding style con-
sistency and function organization, the overall quality of the code in the Native
DEX contracts is satisfactory. The comprehensive documentation provided by
the team significantly aids in understanding the codebase, mitigating some of
the potential readability issues caused by the lack of a consistent coding style and
sprawling function definitions.

Recommendation: It is recommended that the team adopts amore consistent cod-
ing style across the codebase to improve readability and maintainability. This
could involve the use of a style guide or linter to enforce consistency. Addition-
ally, refactoring some of the sprawling functions could make the code easier to
read andmaintain. Despite these areas for improvement, the comprehensive doc-
umentation is highly beneficial and should continue to be updated and expanded
as the codebase evolves.

5.3 | Interoperability Review

Evaluation:

The interoperability review involved examining the interaction and integration
capabilities of the Native DEX smart contracts with both internal and external
entities, namely PancakeSwap, Uniswap v3 and 1inch. The contracts were tested
for their ability to interact seamlessly with other contracts in the system, as well
as with third-party contracts and services. The review also considered the ease of
integrating the contracts into different blockchain environments and platforms.

24

Part 5: Additional Analysis & Conclusion5.4. On-chain and Off-chain Analysis

The review found that the Native DEX contract achieve interoperability. The
contracts interact as expected with other contracts in the system, facilitating
efficient and secure transactions. The contracts are also capable of integrating
smoothly with third-party contracts and services, which enhances their versatil-
ity and usability.

Recommendation: The Native DEX smart contracts have demonstrated robust
interoperability capabilities. It is recommended that the team continues tomain-
tain and enhance this interoperability, particularly as the DeFi ecosystem con-
tinues to grow and evolve. This could involve integrating with additional third-
party contracts and services, or adapting to new standards and protocols as they
emerge.

5.4 | On-chain and Off-chain Analysis

Evaluation:

The on-chain and off-chain analysis focused on the handling of both types of
transactions within the Native DEX smart contracts. The aim was to verify the
accuracy, security, and effectiveness of these operations. Native supports both
on-chain pricing (via AMMs) and off-chain pricing (via PMMs). The workflow
of Native involves a series of on-chain and off-chain operations, starting from
pool setup to the execution of swaps.

During the pool setup, the project owner deploys a NativePool, sets the pricing
model, and provides liquidity support by granting allowance to the NativePool
contract. This process is conducted on-chain. The project owner also sets up a
signer, which is used to sign orders. This can be done either on-chain or off-chain,
depending on whether the project owner chooses to operate their own signer or
use the default signer provided by Native.

The swap process involves both on-chain and off-chain operations. The trader
interacts with the Native off-chain API to receive a signed order. The off-chain
router reviews various liquidity sources, selects the route based on price, and
returns the signed order. Once the trader has the signed order, they can execute
the transaction on-chain by invoking the NativeRouter functions.

Thecore contracts, suchas

F
IL
E

NativeRouter.sol and

F
IL
E

NativePool.sol , han-
dle the on-chain operations, while the off-chain operations are handled by the
off-chain API and router. The analysis of these contracts and their operations
revealed a well-structured system that effectively handles both on-chain and off-
chain transactions.

25

Part 5: Additional Analysis & Conclusion5.5. Evaluation of Liquidity Models

In conclusion, the on-chain and off-chain analysis of the Native DEX smart con-
tracts demonstrated a robust system that effectively handles both types of transac-
tions. The system’s design ensures the accuracy and security of these operations,
contributing to the overall effectiveness of the Native DEX platform.

Recommendation: The on-chain and off-chain operations of the Native DEX
smart contracts are well-structured and effective. It is recommended that the
team continues to monitor and optimize these operations, particularly in re-
sponse to changes in the Ethereum network or the broader blockchain environ-
ment. Regular audits and reviews should be conducted to ensure the accuracy,
security, and effectiveness of both on-chain and off-chain transactions.

5.5 | Evaluation of Liquidity Models

Evaluation: #

Theevaluation of liquiditymodels involved assessing the different liquiditymod-
els provided by Native. The models were evaluated for their effectiveness, us-
ability, and potential risks. The evaluation considered factors such as the ease
of providing liquidity, the return on liquidity provision, and the security of the
liquidity pools.

The evaluation found that the liquidity models provided by Native are effective
and user-friendly. The models make it easy for users to provide liquidity and
earn returns. The liquidity pools are secure, with robust mechanisms in place
to protect users’ funds. However, the evaluation also identified potential risks
associated with the liquidity models, such as the risk of impermanent loss. Users
are advised to understand these risks before providing liquidity.

Recommendation: While the liquidity models provided by Native are effective
and user-friendly, it is recommended that the team continues to educate users
about the potential risks associated with providing liquidity, such as imperma-
nent loss. This could involve creating educational content or tools to help users
understand these risks. Additionally, the team should continue to monitor and
optimize the liquidity models to ensure they remain effective and competitive
in the evolving DeFi landscape.

26

Part 5: Additional Analysis & Conclusion 5.6. User Experience Audit

5.6 | User Experience Audit

Evaluation: G#

The user experience audit involved analyzing how the Native DEX smart con-
tracts impact the user experience. The audit focused on the ease of use, accessibil-
ity, and transparencyof the contracts. Theeaseof usewas assessedby considering
the simplicity and intuitiveness of the contract functions. The accessibility was
evaluated by examining the availability and responsiveness of the contracts. The
transparency was assessed by considering the clarity and comprehensiveness of
the contract documentation and user guides.

The audit found that the Native DEX contracts provide a positive user experi-
ence, especially when paired with the available developer documentation [4].
The contract structure is fairly accessible, with intuitive functions that make it
simple for users to perform transactions. The contracts are accessible and re-
sponsive, ensuring that users can interact with them smoothly and efficiently.
The contracts are also transparent, with clear and comprehensive documenta-
tion and user guides that help users understand how to use them effectively.

Recommendation: The user experience provided by the Native DEX smart con-
tracts is positive, but there is always room for improvement. It is recommended
that the team continues to focus on improving the ease of use, accessibility, and
transparency of the contracts. This could involve refining the user interface, im-
proving error messages, or enhancing the documentation and user guides. Regu-
lar user feedback should be sought to identify areas for improvement and ensure
that the contracts continue to meet the needs of users.

5.7 | Conclusion

The conducted evaluations and reviews of the Native DEX smart contracts en-
compassed performance measurement, code scrutiny, interoperability assess-
ment, on-chain and off-chain transaction analysis, liquidity model examination,
and user experience auditing. This broad analysis has led to a comprehensive
understanding of the operational effectiveness, code standard, interoperability,
transaction processing, liquidity models, and user interaction of these contracts.

In the aspect of performance, the smart contracts presented acceptable gas us-
age, scalability, and transaction velocity metrics. The code analysis identified a
number of inconsistencies in coding style and excessive complexity in function
definitions, but the provided documentation was found to sufficiently compen-
sate for these issues, leading to a positive assessment of the code quality. The

27

Part 5: Additional Analysis & Conclusion 5.7. Conclusion

smart contracts have proven to be robust in terms of interoperability, with suc-
cessful interaction with both internal and external components.

The analysis of on-chain and off-chain transactions indicated a well-organized
system that manages both transaction types, underpinning both the accuracy
and security of transactions. The liquidity models offered by Native were found
to be efficient and user-oriented. However, it is recommended that users fully
understand the potential risks before participating in liquidity provision. The
user experience audit indicates that the smart contracts have been designed with
an emphasis on user accessibility, and the resulting transparency and intuitive
functionality contribute to the overall user experience.

The results of this audit suggest that the Native DEX smart contracts have been
developed with a significant degree of consideration and exactness. This study’s
findings should contribute to a better understanding of the integrity and reliabil-
ity of the Native DEX platform for users and other relevant parties.

28

6

About Symbolic Software

Symbolic Software1, established in Paris, France in 2017, is a soft-
ware consultancy specializing in applied cryptography and software
security. The firmhas executed over 300 cryptographic software au-
dits within the European information security sector and has made
significant contributions to the field by publishing peer-reviewed
cryptographic research software. Demonstrating their creativity
and passion, Symbolic Software also develops captivating puzzle
games that have been critically acclaimed.

Offering wide-ranging expertise in cryptographic software audits,
Symbolic Software has audited critical cryptographic components of global plat-
forms, ranging from password managers to cryptocurrencies. The company has
developed Verifpal® and Noise Explorer, innovative research software for cryp-
tographic engineering, which have contributed to peer-reviewed scientific publi-
cations. Symbolic Software’s portfolio is marked by collaboration with leading
entities such as Cure53 and the Linux Foundation, and they have successfully
audited critical technologies like MetaMask and key COVID-19 contact tracing
applications in Europe.

In addition to their software security expertise, Symbolic Software creates engag-
ing puzzle games. Their game,Dr. Kobushi’s Labyrinthine Laboratory®, available
on Nintendo Switch™ and Steam, has been highly praised by reviewers.

1Stay updated on Symbolic Software’s latest work by visiting https://symbolic.sofware.

29

https://symbolic.sofware

References

[1] Native Labs.Native Whitepaper. 2023. url: https://docs.native.org/
native-whitepaper/ (visited on 07/18/2023).

[2] Native Labs.Native Contracts. 2023. url: https://github.com/Native-
org/native-contracts (visited on 07/18/2023).

[3] Josselin Feist, Gustavo Grieco, and Alex Groce. “Slither: a static analysis
framework for smart contracts.” In: 2019 IEEE/ACM 2nd International
Workshop on Emerging Trends in Software Engineering for Blockchain (WET-
SEB). IEEE. 2019, pp. 8–15.

[4] Native Labs. Native V1 Developer Documentation. 2023. url: https://
native-1.gitbook.io/native-dev/native-v1/overview (visited on
07/31/2023).

30

https://docs.native.org/native-whitepaper/
https://docs.native.org/native-whitepaper/
https://github.com/Native-org/native-contracts
https://github.com/Native-org/native-contracts
https://native-1.gitbook.io/native-dev/native-v1/overview
https://native-1.gitbook.io/native-dev/native-v1/overview

	Executive Summary
	Target Summary
	Static Analysis Results
	Code Review Results
	Additional Analysis & Conclusion

	Target Overview
	Analysis Target Summary
	Workflow
	Pool Setup
	Swap

	Smart Contracts
	Core Contracts
	Liquidity Pool Contracts

	Analysis Motivation
	Audit Scope
	High Priority
	Lower Priority

	Statement of Work
	Work Schedule
	Operational Notes

	Static Analysis
	NAT-001-001 Immediately Overwritten Variables
	NAT-001-002 Redundant Condition Check in Contract

	Code Review
	NAT-001-003 Stack Depth Issues Under Standard Compiler Configurations
	NAT-001-004 Outdated Dependencies with Patched Vulnerabilities
	NAT-001-005 Unncessary Gas Cost from On-Chain Hash Operation

	Additional Analysis & Conclusion
	Performance Evaluation
	Code Quality Inspection
	Interoperability Review
	On-chain and Off-chain Analysis
	Evaluation of Liquidity Models
	User Experience Audit
	Conclusion

	About Symbolic Software
	References

