2PC-MPC in Rust:

Initial Functional Correctness
and Security Audit

DW-01

Prepared for dWallet Labs

Dr. Nadim Kobeissi
Erik Takke

Symbolic Software
In Collaboration with 3MI Labs

June 4, 2024

Abstract

dWallet Labs’s 2PC-MPC high-level Rust crate represents the practical soft-
ware implementation of the “2PC-MPC: Emulating Two Party ECDSA in Large-
Scale MPC” protocol, which introduces a novel cryptographic structure for
enabling a non-collusive and UC-secure two-party Elliptic Curve Digital Sig-
nature Algorithm (ECDSA) scheme. This architecture is novel in that it allows
one party to be fully centralized, while fully abstracting away the decentraliza-
tion of the second party, allowing it to scale to an arbitrary n virtual parties.

This audit focused on evaluating the functional correctness and security of
three main components: distributed key generation, presign, and sign proto-
cols within a massively decentralized network context.

Symbolic Software’s review finds supporting evidence highlighting the code-
base’s strengths in supporting scalability, security, and efficient communica-
tion, with linear communication scaling and near-constant computational
complexity per party. The audit also identified some relatively minor areas
requiring attention. Some were documented (such as the incomplete imple-
mentation of locality due to current limitations in bulletproofs), while others
related to the discovery of a nonce reuse attack caused by the Rust code devi-
ating from spec.

The audit further revealed a high degree of complexity within the Rust code-
base, particularly at the protocol implementation level. Efforts have been made
to mitigate these complexities by aligning the code comments with the paper’s
specifications. Despite these efforts, the complexity inherent in the code still
poses significant challenges, underscoring the importance of thorough doc-
umentation and perhaps suggesting a need for simplifying the codebase to
improve auditability and reduce the potential for errors.

Recommendations for future improvements, along with identified vulnerabil-
ities and their potential mitigations, are provided to guide the next stages of
development and deployment.

ii

Contents

1 Executive Summary 1
1.1 AboutThisAudit. i e e e 1
1.2 WhatWasAudited 2
1.3 About the Functional Correctness Assessment 3
1.4 About the Security Assessment 4
1.5 SummaryofConclusions S

2 Target Overview 6
21 2PC-MPCCrate v ittt it i e et e 7
2.1.1 Main Subprotocols L o L 7
2.1.1.1 Distributed Key Generation 8

2112 Presign 8

2113 Sign. ... e 8

2.1.2 Understanding the Decentralized Party in a Protocol Setting 8

2.2 2PC-MPC AccompanyingPaper 10
23 UnderlyingCrates 11
3 Functional Correctness Assessment 13
3.1 DKGSubprotocol 13
3.1.1 Centralized Party Public Key Share Commitment 14
3.1.1.1 Sampling the Secret Key Share 14

3.1.1.2 Public Key Share Derivation I

3.1.1.3 Commitment to the Public Key Share 15

3.1.1.4 Generation of Zero-Knowledge Proof 1S

3.1.1.5 Centralized Party Public Key Share Commitment 16

3.1.2 Initialization and Encryption of Secret Key Share 17

3.1.3 Preparation for Decentralized Proof Verification 18

3.1.4 Decommitment and Verification of Public Key Shares 18

3.1.5 Decentralized Party Decommitment Proof Verification Round 20

3.2 PresignSubprotocol L o o 22
3.2.1 Step 1: Centralized Party Preparation 22
3.2.1.1 Nonce Generation 22

3.2.1.2 Commitment Generation 22

Page iii of 59

Contents iv

3.2.1.3 ProofConstruction 23

3.2.2 Step 2a: Decentralized Party Nonce and Mask Generation . 23

3.2.2.1 Verification of Commitments 24

3.2.2.2 Sampling of Masks and Nonce Shares 24

3.2.3 Step 2a: Decentralized Party Mask Encryption 26

3.2.4 Step 2b: Initialize Proof Aggregation 28

3.2.5 Step 3: Centralized Party Verification of Presign Output . . . 30

3251 InputValidation 30

3.2.5.2 Decryption and Verification of Encrypted Data . . 30

3.2.5.3 Verification of Range Proofs 31

3.2.54 Handling of Nonce Public Shares. 32

3.2.5.5 Final Output Construction 32

3.3 SignSubprotocol. L o o 34

3.3.1 Step 1: Centralized Party Signature and Proof Setup 34
3.3.2 Step 2: Decentralized Party Proof Verification and Signature

Setup. 36

3.3.2.1 Steps2a, 2b: Signature Partial Decryption Round 36
3.3.2.2 Step 2c: Signature Threshold Decryption Round . 38

4 Security Assessment 41
4.1 DW-01-001 Nonce Reuse in Decentralized Party Presigning Step . . 41
42 DW-01-002 Insufficient Checks on ComputationalSecuritySizedNum-

ber Type . . . o i 42

4.3 DW-01-003 No Zeroization of Secrets in Memory 43

5 Conclusions 46
5.1 Summary of Core Assessmentsov i 46

5.2 Note on Target Code Complexity 47

S3 FutureWork 48
5.3.1 In-Depth CryptographicReview 48

5.32 Cryptographic Optimizations 48

5.3.3 Protocol API Correctness and Usability 49

5.3.4 State Machine Transition Analysis 50

5.3.5 Understanding the Decentralized Party in a Protocol Setting S0

5.3.6 Performance and Scalability Testing S1

5.3.7 Integration with Existing Systems and Frameworks 52

5.3.8 Real-World Applications and Case Studies 52

54 Acknowledgments oL oL oL 53

6 About Symbolic Software 54
Bibliography 55

Appendix A Main Subprotocol Figures 56

DKG
ECDSA
EncDH
EncDL
MPC

List of Acronyms

Additively Homomorphic Encryption 48
Distributed Key Generation 3
Elliptic Curve Digital Signature Algorithm ii
Encrypted Diffie-Hellman 27
Encrypted Discrete Logarithm 27
Multi-Party Computation 10

Page v of 59

Executive Summary

For the busy executive who just doesn’t have the time!

1.1 | About This Audit

Ensuring secure transactions on the internet, especially in blockchain technology, is
an area of continuous research. As blockchain technologies have evolved, so have
the need for more robust security solutions, including through threshold cryptogra-
phy. Threshold cryptography enhances security by splitting control over a private key
among multiple participants, requiring a subset (threshold) of them to agree before
any operation, like creating a digital signature, is executed.

However, traditional implementations of threshold ECDSA [1] suffer from two main
drawbacks: high message complexity and the need for secure, direct communication
channels between all participants, which becomes impractical as the number of par-
ticipants increases. These challenges lead to inefficiencies, especially in large-scale
networks, hindering true decentralization and the broad adoption of blockchain tech-
nologies.

The main target of this audit engagement introduces a novel approach called “2PC-
MPC’, which stands for two-party computation emulated within a multi-party com-
putation framework. The value of this approach lies in how it scales security without
introducing complexity for the end users, or clients. 2PC-MPC aims to achieve this
while allowing one signatory party to be fully centralized and “abstracting away” the
decentralization of the second party, effectively making it a virtually decentralized
party whose internal decentralization structure can be rearranged at will and without
major changes to the protocol as it is deployed.

In addition, unlike traditional models that require complex and secure direct commu-
nications among all participants, 2PC-MPC uses a broadcast channel. This reduces
overhead because every participant sends and receives messages through a common
channel without needing direct connections to others.

The main target of this audit is the Rust implementation of the 2PC-MPC protocol,
which is designed to be used in a blockchain context. The protocol is implemented

Page 1 of 59

Part 1: Executive Summary 1.2. What Was Audited

as a Rust crate, which is a package of reusable code that can be shared with other
developers.

The underlying crates used in the implementation of the 2PC-MPC protocol are also
of interest. These crates provide the cryptographic primitives and utilities necessary
for the protocol to function. The audit will focus on the security of these crates as well
as the 2PC-MPC protocol itself.

This audit is a collaboration between Symbolic Software and 3MI Labs. Symbolic
Software is a applied cryptography and security software auditing firm that special-
izes in security audits and cryptographic protocol analysis. 3MI Labs' is a research
company that focuses on blockchain technologies and decentralized systems.

1.2 | What Was Audited

The audit focused on the following components:

m The 2PC-MPC High-Level Rust Crate: This implements distributed key gen-
eration, presigning, and signing protocols for enabling non-collusive and univer-
sally composable (UC-secure) two-party ECDSA in a massively decentralized
network setting. The audit assesses the correctness and security of this core
implementation.

m The Accompanying Paper and Formal Specification: The audit verifies that
the Rust crate implementation aligns with the protocols described in the ac-
companying academic paper.

® The Underlying Rust Crates: Severallower-level crates providing cryptographic
primitives like group operations, homomorphic encryption, zero-knowledge
proofs, and commitments are reviewed for security and correctness.

The audit focuses on two core assessments: functional correctness (verifying the im-
plementation matches specifications) and security (identifying potential vulnerabili-
ties).

Due to time constraints, the audit had a limited scope, so further in-depth reviews are
recommended, especially for the more complex underlying crates. Chapter 2 outlines
the coverage level rating system used to gauge the depth of review for each component.

!Learn more about 3MI Labs by visiting https://www.3milabs.tech.

Page 2 of 59

https://www.3milabs.tech

Part 1: Executive Summary1.3. About the Functional Correctness Assessment

1.3 | About the Functional Correctness Assessment

Chapter 3 assesses the functional correctness of the three main subprotocols in 2PC-
MPC: the Distributed Key Generation (DKG) subprotocol, the presign subprotocol,
and the sign subprotocol. The assessment is based on the provided Rust implementa-
tion of the protocol, focusing on the cryptographic operations and protocol steps as
described in the 2PC-MPC paper.

With the DKG subprotocol:

® The implementation follows Protocol 4 in the paper, using Rust’s generic type
system for the cryptographic primitives.

m It covers the centralized party’s public key share commitment, decentralized
party’s initialization and encryption of secret key share, preparation for decen-
tralized proof verification, and decommitment and verification of public key
shares.

m The code aligns with the protocol specifications, ensuring secure generation
and handling of secret and public key shares.

With the presign subprotocol:

® The implementation follows Protocol S, preparing and ensuring the integrity
and secrecy of nonce shares for distributed signature generation.

m It covers the centralized party’s preparation (nonce generation, commitment,
and proof construction), decentralized party’s nonce and mask generation and
encryption, proof aggregation initialization, and centralized party’s verification
of presign output.

® The code ensures secure handling of nonces, masks, and their associated proofs,
aligning with the protocol specifications.
With the sign subprotocol:
® The implementation follows Protocol 6, generating a decentralized digital sig-
nature.

m It covers the centralized party’s signature and proof setup (homomorphic en-
cryption and zero-knowledge proofs), decentralized party’s proof verification
and signature setup (partial decryption and threshold decryption rounds).

m The code ensures secure computation and verification of signature components,
adhering to the protocol specifications.

Page 3 of 59

Part 1: Executive Summary 1.4. About the Security Assessment

The assessment notes that while the implementation is functionally correct, it was
conducted on a best-effort basis due to the high complexity of the target, and fur-
ther analysis is encouraged. It also highlights that the implementation may differ in
ordering from the protocol steps in the paper for optimization purposes.

1.4 | About the Security Assessment

Chapter 4 presents a security assessment of the provided Rust implementation of the
2PC-MPC protocol. The assessment focuses on identifying potential vulnerabilities,
weaknesses, and deviations from best practices that could compromise the security of
the cryptographic operations and the overall protocol.

The security assessment is based on a review of the codebase, with particular attention
given to the handling of sensitive data, the implementation of cryptographic primi-
tives, and the adherence to secure coding practices. The assessment aims to uncover
any security issues that could lead to unauthorized access, data leakage, or the com-
promise of the protocol’s integrity.

The chapter is structured around three main security findings, each presented in detail
using the provided audit finding template. The findings are categorized based on their
severity, ranging from low to critical, indicating the potential impact they could have
on the security of the 2PC-MPC protocol:

1. DW-01-001 (§4), identified as a critical issue, discusses the reuse of nonces in
the decentralized party presigning step. Nonce reuse is a well-known vulner-
ability in cryptographic protocols that can lead to serious attacks, such as the
recovery of private keys or the ability to forge signatures. The assessment pro-
vides recommendations for revising the nonce handling procedures to ensure
the uniqueness and unpredictability of nonces used in the protocol.

2. DW-01-002 (§4), classified as a medium severity issue, highlights insufficient
checks on the ComputationalSecuritySizedNumber type. The current imple-
mentation of this type lacks proper validation and restrictions, potentially al-
lowing values with insufficient entropy to be used in security-sensitive contexts.
The assessment recommends implementing strict compile-time and runtime
checks to enforce the required entropy criteria for this type.

3. DW-01-003 (§4), rated as a low severity issue, addresses the lack of zeroiza-
tion of secrets in memory. The 2PC-MPC crate does not currently employ any
mechanisms to securely erase sensitive data from memory once it is no longer
needed. This lack of zeroization could potentially leave secrets vulnerable to
unauthorized access or exploitation. The assessment recommends utilizing the
Rust zeroize crate to ensure the secure erasure of sensitive data from memory.

Page 4 of 59

Part 1: Executive Summary 1.5. Summary of Conclusions

For each finding, the assessment provides detailed explanations of the issue, including
relevant code snippets and the potential impact on the security of the protocol. Ad-
ditionally, the assessment offers specific recommendations and mitigation strategies
to address the identified vulnerabilities and strengthen the overall security posture of
the 2PC-MPC implementation.

1.5 | Summary of Conclusions

Chapter S presents a comprehensive summary of the analysis and assessment con-
ducted on the Rust implementation of the 2PC-MPC protocol.

§ 5.1 recaps the key findings from the functional correctness assessment and the se-
curity assessment. The functional correctness assessment, which compared the im-
plementation against the protocol specifications, found that the Rust code generally
aligns with the protocol descriptions. However, further analysis is recommended due
to the high complexity of the target. The security assessment identified three main
security findings of varying severity levels, highlighting issues such as nonce reuse,
insufficient checks on security-sensitive types, and lack of zeroization of secrets in
memory.

§ 5.2 discusses the exceptionally high complexity of the Rust implementation, which
can make the codebase challenging to understand, maintain, and audit. The chapter
provides recommendations for future development to address the complexity issue,
including code simplification, comprehensive documentation, rigorous testing, regu-
lar security audits and community engagement.

§ 5.3 proposes several avenues for further exploration and development to enhance the
protocol’s security, efficiency, and usability. These include an in-depth cryptographic
review, cryptographic optimizations, protocol API correctness and usability analysis,
state machine transition analysis, understanding the decentralized party in a protocol
setting, performance and scalability testing, integration with existing systems and
frameworks, and real-world applications and case studies.

The chapter emphasizes the importance of conducting an in-depth protocol analysis
that treats each virtually decentralized party as a distinct individual party, considering
factors such as party composition, communication patterns, key management, fault
tolerance, scalability, privacy, and security.

Page 5 of 59

Target Overview

This chapter describes the three main targets of this audit:

1. 2PC-MPC High-Level Rust Crate. The main target of the audit, implementing
the full distributed key generation, presign, and sign subprotocols as described
in the accompanying paper/formal specification. It is designed to offer a two-
party ECDSA scheme that is not only non-collusive and UC-secure but also
capable of handling the demands of a massively decentralized network with
scalability in both communication and computation. Our goal here is to assess
the correctness and security of the implementation, ensuring that it aligns with
the theoretical specifications and claims of the protocol.

2. Accompanying Paper and Formal Specification. The audit assesses whether
the implementation in the Rust crate aligns with the protocol as described in
the accompanying academic paper. This includes a verification of the protocol’s
claims such as UC security, public verifiability, and the efficiency of its commu-
nication and computational complexities. The fidelity of the crate to the paper’s
specifications helps assess whether the theoretical security properties hold in
the practical deployment.

3. Underlying Rust Crates. The functionality of the 2PC-MPC crate relies on
several lower-level crates, each responsible for different cryptographic primi-
tives and operations. These include crates for handling group operations, ho-
momorphic encryption, zero-knowledge proofs, and commitments. Our audit
examines these crates for security and correctness, ensuring that they robustly
support the higher-level operations of the 2PC-MPC crate.

The audit’s assessment guidelines focus on two core assessments:

1. Functional Correctness Assessment. The audit verifies that the implementa-
tion of the protocol in the 2PC-MPC crate aligns with the specifications out-
lined in the accompanying paper. This includes ensuring that the cryptographic
operations are correctly implemented, the protocol’s communication and com-
putational complexities are as claimed, and the protocol’s security properties
are maintained.

Page 6 of 59

Part 2: Target Overview 2.1. 2PC-MPC Crate

2. Security Assessment. The audit evaluates the security of the 2PC-MPC crate
and its underlying crates, examining them for potential vulnerabilities that could
compromise the security of the protocol. This includes assessing the crates for
common cryptographic vulnerabilities, ensuring that they follow best practices
in secure implementation, and evaluating their resistance to potential attacks.

The inherent complexities involved, the limited timeframe for the engagement and
the breadth of the codebase restricted the depth of review possible for each compo-
nent. Consequently, certain areas, particularly some of the more intricate aspects of
the underlying crates and their integration with the main 2PC-MPC crate, did not
undergo an exhaustive examination. It is highly recommended that further in-depth
reviews be undertaken to ensure a comprehensive evaluation of all components. Addi-
tional scrutiny will likely yield further insights and potentially uncover subtleties not
detected in this initial audit, thereby strengthening the overall security and robustness
of the project.

The “Coverage Level” rating system used in this report is intended only as an intuitive
general guideline intended to provide a high-level overview of the audit’s scope and
depth. It should not be interpreted as a definitive measure of the audit’s quality or
completeness.

2.1 | 2PC-MPC Crate

Coverage Level: @@ @O0

m Repository: https://github.com/dwallet-1labs/2pc-mpc

® Branch: main!

m Commit: 5891305042f8b13810b8d1d4e15cec5e4e6efeab

This main crate integrates distributed key generation, presign, and sign protocols es-
sential for multiparty ECDSA. It aims to provide a non-collusive and UC-secure
two-party ECDSA scheme that scales linearly in communication while maintaining
near-constant computational complexity.

2.1.1 | Main Subprotocols

The audit focused on assessing the functional correctness and security of each of the
three main subprotocols:

"When initially audited, the same target was offered under a different branch, instantiations,
with the commit hash 857d0420dc2149543e417f7689F5335683df14c6. This same target has since
been merged into the main branch, under the commit hash listed above.

Page 7 of 59

https://github.com/dwallet-labs/2pc-mpc

Part 2: Target Overview 2.1. 2PC-MPC Crate

2.1.1.1 | Distributed Key Generation

DKG is designed to establish the cryptographic framework necessary for subsequent
secure communications and transactions. Initially, party A generates a random private
key, = 4, from which it computes the corresponding public key, X 4. This public key is
then broadcasted to all participants for verification. Simultaneously, each participant
B generates its own private key z; and computes the respective publickey X;. Each B;
then encryptsits private key to collectively create cty.,, whichis a core part of ensuring
that the collective public key X5 can be used without exposing individual private
keys. This phase concludes with all parties verifying the integrity and correctness of
the public keys involved; any discrepancy or failure in validation leads to aborting the
process and identifying the responsible parties.

2.1.1.2 | Presign

The presigning phase is critical for setting up secure and verifiable transactions. Here,
party A starts by generating a random nonce k4. Following this, each participant B;
contributes by generating their own nonces and encrypted values that collectively will
form the secure environment for the transaction. These include generating random
values k;, computing corresponding public values R;, and encrypting these values
alongside additional parameters designed to mask and secure the transaction process.
Each B;’s contributions are verified through a series of cryptographic proofs to ensure
that all values are correctly generated and committed. The presigning phase concludes
with the generation of the final signature shares, which are then broadcasted for further
verification.

2.1.1.3 | Sign

Signing completes the process by creating a valid ECDSA signature that can be used
to authenticate a transaction securely. Party A computes a preliminary signature com-
ponent using its private keys, the previously committed values, and the encrypted
information shared by other participants during the presigning phase. The decentral-
ized participants B; then collectively verify A’s computations and contribute their
respective parts of the signature by decrypting and adjusting the signature share using
a shared random factor 7. The final signature, composed of r and s, is calculated using
a combination of all shared contributions, ensuring that the signature is both valid
and verifiable.

2.1.2 | Understanding the Decentralized Party in a Protocol Setting

In this audit report, we have primarily focused on the interaction between two main
entities: the centralized party and the decentralized party. The centralized party is
treated as a single, unified entity, while the decentralized party is considered as a single,
virtually merged entity representing multiple participants. However, it is important

Page 8 of 59

Part 2: Target Overview 2.1. 2PC-MPC Crate

to acknowledge that this simplification may not fully capture the nuances and com-
plexities of the type of truly decentralized system that 2PC-MPC aims to facilitate.

In reality, the decentralized party consists of multiple individual parties, each with
their own unique characteristics, behaviors, and potential for change. These parties
may join orleave the system dynamically, merge with other parties, or undergo internal
changes that affect their roles and responsibilities within the protocol.

To gain a more comprehensive understanding of the 2PC-MPC protocol and its im-
plementation, future work should include an in-depth protocol analysis that treats
each virtually decentralized party as a distinct individual party. This analysis should
take into account the following considerations:

m Party Composition: Examine the composition of the decentralized party, con-
sidering the number of individual parties involved, their roles, and their relation-
ships with each other. Analyze how the protocol handles the addition of new
parties, the removal of existing parties, and the potential for parties to merge or
split.

» Communication Patterns: Investigate the communication patterns among
the individual parties within the decentralized party. Analyze how messages are
exchanged, how consensus is reached, and how potential conflicts or disagree-
ments are resolved. Consider the impact of network latency, asynchronous
communication, and the possibility of malicious or faulty parties.

m KeyManagement: Explore the key management aspects of the protocol, focus-
ing on how cryptographic keys are generated, distributed, and managed among
the individual parties. Analyze the security implications of key sharing, key
rotation, and the potential for key compromise or leakage.

m Fault Tolerance: Assess the protocol’s resilience to failures or misbehavior of
individual parties within the decentralized party. Examine how the protocol
handles scenarios such as party disconnections, network partitions, or mali-
cious actions. Evaluate the protocol’s ability to maintain consistency, integrity,
and availability in the presence of faults.

m Scalability: Investigate the scalability aspects of the protocol, considering how
it performs as the number of individual parties within the decentralized party in-
creases. Analyze the impact of larger party counts on communication overhead,
computational complexity, and overall system performance.

m Privacy and Security: Assess the privacy and security guarantees provided by
the protocol when treating each virtually decentralized party as an individual
party. Analyze the potential for information leakage, collusion, or attacks that
may arise from the interactions among individual parties. Evaluate the effective-
ness of the protocol’s privacy-preserving mechanisms and the robustness of its
security properties.

Page 9 of 59

Part 2: Target Overview 2.2. 2PC-MPC Accompanying Paper

By conducting an in-depth protocol analysis that considers the decentralized party as
a collection of individual parties, we can gain a more comprehensive understanding
of the 2PC-MPC protocol’s behavior, security, and performance in a truly decentral-
ized setting. This analysis will help identify potential challenges, vulnerabilities, and
areas for improvement that may arise from the complexities of decentralized party
composition and interaction.

Furthermore, this analysis can provide valuable insights into the protocol’s adaptabil-
ity and resilience to changes in the decentralized party landscape. By examining how
the protocol handles party additions, mergers, and shifts, we can assess its ability to
accommodate the dynamic nature of decentralized systems and ensure its continued
effectiveness and security.

The insights gained from this decentralized party composition analysis will contribute
to the ongoing development and refinement of the 2PC-MPC protocol and its imple-
mentation. By addressing the nuances and challenges associated with treating virtually
decentralized parties as individual parties, we can enhance the protocol’s robustness,
scalability, and practical applicability in real-world decentralized environments.

2.2 | 2PC-MPC Accompanying Paper

Coverage Level: @@ @O0

The 2PC-MPC high-level Rust crate is paired with a formal specification, currently
available as an ePrint draft, 2PC-MPC: Emulating Two Party ECDSA in Large-Scale
MPC” [2], which serves as a foundational specification for the crate, detailing an
original cryptographic protocol designed for massively decentralized networks. The
protocol enables the emulation of two-party ECDSA signing in a Multi-Party Compu-
tation (MPC) setting, where one party A is fully centralized, while party B is virtually
decentralized such that its decentralization can be “abstracted away”, and consists of
a threshold of n participants. The protocol is designed to be universally composable
(UC-secure) and publicly verifiable.

The construction appears to be largely inspired by previous threshold ECDSA work
(for example [1]), with the primary difference being the use of a two-party MPC proto-
col to emulate the threshold ECDSA protocol. To accomplish this, the paper employs
a novel combination of Paillier encryption [3], Maurer’s universal zero-knowledge
proofs [4], bullet proofs [5] and Pedersen commitments [6] to ensure the security
and privacy of the protocol.

The paper makes several key claims regarding the protocol and its implementation:

1. UC-Secure and Publicly Verifiable Protocols. The paper introduces thresh-
old ECDSA protocols that are meant to be universally composable (UC-secure)
but also publicly verifiable. This ensures that the protocols can be safely com-

Page 10 of 59

Part 2: Target Overview 2.3. Underlying Crates

posed with other cryptographic protocols without compromising overall se-
curity, and the outcomes of protocol executions are verifiable by any external
observer.

2. Reduction in Complexity. A significant achievement detailed in the paper is
the reduction of message complexity from O(n?) to O(n) and computational
complexity from O(n) to practically O(1) per participant, where n is the num-
ber of parties.

3. Broadcast Communication Channel. Unlike traditional multiparty compu-
tation protocols that may require peer-to-peer communication, this protocol
operates exclusively over a broadcast channel. This design choice is particularly
suited to applications such as permissionless blockchain bridges and decentral-
ized custody solutions, where establishing direct channels between all parties
is unfeasible.

2.3 | Underlying Crates

The audit targets several Rust crates that are integral to the implementation of the
"2PC-MPC: Emulating Two Party ECDSA in Large-Scale MPC” protocol, each con-
tributing distinct cryptographic functionality.

The underlying crates were audited according to the version imported by the 2PC-
MPC crate as of the commit repository, hash and branch mentioned in §2.1. The
crates audited include:

m group. Defines traits for abelian groups to ensure they operate securely un-
der cryptographic protocols, supporting both dynamic and static groups. Its
structure allows for the use of specific group types in higher-level schemes and
ensures that group operations are constant-time and secure against malicious
inputs. Coverage Level: @@ @O

® homomorphic-encryption. Establishes traits for homomorphic encryption, in-
cluding threshold schemes, which are crucial for maintaining data privacy while
allowing computations on encrypted data. Coverage Level: @@ @O O

m proof. Provides traits and helpers for constructing zero-knowledge proofs and
range proofs, facilitating the verification of claims without revealing underlying
data. Coverage Level: 0 @@ @O

® commitment. Offers traits for creating homomorphic and non-homomorphic
commitment schemes, including implementations based on Pedersen commit-
ments and hash-based techniques usingmerlin:: Transcript. Coverage Level:
00000

Page 11 of 59

Part 2: Target Overview 2.3. Underlying Crates

® maurer and enhanced-maurer. These crates implement generic Maurer zero-
knowledge proofs [4] that can be adapted for various group homomorphisms,
with the enhanced version including additional capabilities for range claims.
Coverage Level: @@OOO

Prior to the commissioning of this audit, most of the above crates had been subject to
a self-reported internal auditing process that includes review by cryptographers and
programmers. However, none of these components had undergone a third-party audit.
The audit has thus focused on verifying their adherence to the cryptographic speci-
fication and their functional correctness assessing their implementation complexity,
and evaluating their security measures against potential vulnerabilities.

Page 12 of 59

Functional Correctness Assessment

This chapter covers the assessment of functional correctness for 2PC-MPC’s three
main subprotocols: the DKG subprotocol, the presign subprotocol, and the sign sub-
protocol. The assessment is based on the provided Rust implementation of the proto-
col, focusing on the cryptographic operations and the protocol steps as described in
the 2PC-MPC paper. [2]

In assessing functional correctness, we examine the implementation of the crypto-
graphic operations and the protocol steps to ensure that the code aligns with the pro-
tocol specifications. We also evaluate the code for potential vulnerabilities, ensuring
that the cryptographic operations are secure and that the protocol steps are correctly
implemented.!

The assessment is structured around the protocol steps outlined in the 2PC-MPC
paper, focusing on the key cryptographic operations and the protocol steps that are
essential for the secure multi-party computation of digital signatures. The assessment
is based on the provided Rust code, which encapsulates the cryptographic operations
and the protocol steps in a modular and reusable manner.

It is important to note that this functional correctness assessment was conducted on
a best-effort basis, given the unusually high complexity of the target. As such, further
analysis is encouraged.

3.1 | DKG Subprotocol

Protocol 4 (Figure A.1) in the “2PC-MPC: Emulating Two Party ECDSA in Large-
Scale MPC” paper describes the key generation step for setting up a secure multi-party
computation environment. This implementation is done in Rust, where the Rust
generic type system is exploited in order to encapsulate the high-level cryptographic
operations.

The Rust code defines a generic struct named Party parameterized over various con-
stants and types that correspond to the cryptographic primitives used in the protocol.

!Security findings are covered in Chapter 4.

Page 13 of 59

Part 3: Functional Correctness Assessment 3.1. DKG Subprotocol

The struct includes public parameters for the group, encryption scheme, and zero-
knowledge proof systems.

pub struct Party<
const SCALAR_LIMBS: usize,
const COMMITMENT_SCHEME_MESSAGE_SPACE_SCALAR_LIMBS: usize,
const RANGE_CLAIMS_PER_SCALAR: usize,
const PLAINTEXT_SPACE_SCALAR_LIMBS: usize,
GroupElement: PrimeGroupElement<SCALAR_LIMBS>,
EncryptionKey: AdditivelyHomomorphicEncryptionKey<
< PLAINTEXT_SPACE_SCALAR_LIMBS>,
RangeProof: AggregatableRangeProof<
<> COMMITMENT_SCHEME_MESSAGE_SPACE_SCALAR_LIMBS>,
UnboundedEncDLWitness: group::GroupElement + Samplable,
ProtocolContext: Clone + Serialize,

protocol_context: ProtocolContext,

scalar_group_public_parameters: group::PublicParameters<GroupElement
< :i:Scalar>,

group_public_parameters: GroupElement::PublicParameters,
encryption_scheme_public_parameters: EncryptionKey::PublicParameters,
unbounded_encdl_witness_public_parameters: UnboundedEncDLWitness::
<> PublicParameters,

range_proof_public_parameters: RangeProof::PublicParameters<

<> RANGE_CLAIMS_PER_SCALAR>,

3.1.1 | Centralized Party Public Key Share Commitment

Relevant Code:
Eissrc/dkg/centralized_party/commitment_round.rs]

The function sample_commit_and_prove_secret_key_share executes theinitial step
of Protocol 4, responsible for securely generating a secret key share and its correspond-
ing public commitment.

3.1.1.1 | Sampling the Secret Key Share

In compliance with Step 1a of Protocol 4, the participant samples a random scalar x 4
from the scalar group, represented by GroupElement :: Scalar. This scalar acts as the
secret key share of the participant.

| |
‘ let secret_key_share = GroupElement::Scalar::sample(

‘ &self.scalar_group_public_parameters, rng)?; ‘
\)

Page 14 of 59

Part 3: Functional Correctness Assessment 3.1. DKG Subprotocol

3.1.1.2 | Public Key Share Derivation

The public key share X4 = x4 - G is derived from the sampled secret key share by
multiplying it with the group’s generator GG. This operation converts the secret scalar
into a point on the elliptic curve, thereby forming the public key share.

i let public_key_share: GroupElement = public_key_share

‘ first() ‘
‘ .ok_or(crate::Error::InternalError)? ‘
‘ .clone(); ‘
|)

3.1.1.3 | Commitment to the Public Key Share

Following the generation of the public key share, the participant creates a commitment
to this public key. This commitment is facilitated by a cryptographic function that
securely binds the public key with randomly chosen commitment randomness. This
action aligns with Step 1b of Protocol 4, ensuring the commitment is ready for the
zero-knowledge proof.

i let commitment = commit_public_key_share(i
\ CENTRALIZED_PARTY_ID, \
‘ &public_key_share,

‘ &commitment_randomness,

| |
|)

)?;

3.1.1.4 | Generation of Zero-Knowledge Proof

The participant generates a zero-knowledge proof that they know the discrete loga-
rithm of the public key share relative to the base G. This proof is essential for verifying
that the participant possesses the corresponding secret key of the publicly committed
key share without revealing the secret key itself. This proof generation corresponds
to Step 1b, where the commitment and the knowledge of the secret key are provably
linked.

let (knowledge_of_discrete_log_proof, _) = knowledge_of_discrete_log::
< Proof::<
GroupElement::Scalar,
GroupElement,
ProtocolContext,
>::prove(
&self.protocol_context,
&language_public_parameters,
vec! [secret_key_share],
rng,

1?5

Page 15 of 59

Part 3: Functional Correctness Assessment 3.1. DKG Subprotocol

After generating the commitment and the zero-knowledge proof, the function encap-
sulates all relevant data into a structure for the next steps of the protocol. This struc-
ture includes the secret key share, public key share, the proof of knowledge, and the
commitment randomness, preparing the participant for any decentralized verification
processes that follow.

let party = decommitment_round::Party {

secret_key_share,
public_key_share,
knowledge_of_discrete_log_proof,
commitment_randomness,

b

3.1.1.5 | Centralized Party Public Key Share Commitment

The function commit_public_key_share encapsulates the process of committing to
a public key share during the protocol, creating a verifiable commitment that can be
checked by other parties in the protocol, ensuring that the public key share is not
tampered with.

pub fn commit_public_key_share<GroupElement: group::GroupElement>(
party_id: PartylID,
public_key_share: &GroupElement,
commitment_randomness: &ComputationalSecuritySizedNumber,
) -> crate::Result<Commitment> {
let mut transcript = Transcript::new(b”DKG commitment round of
— centralized party”);

transcript
.serialize_to_transcript_as_json(b”public key share”, &
— public_key_share.value())
.unwrap();

Ok (Commitment::commit_transcript(
party_id,
"DKG commitment round of centralized party”.to_string(),
&mut transcript,
commitment_randomness,

This function utilizes a transcript for recording cryptographic operations, which is a
common technique in modern cryptographic protocols to ensure that the operations
can be audited and replayed for verification. Under the hood, the merlin [7] Rust
composable proof transcripts library is used to manage the transcript state and serialize
the data for commitment.

Page 16 of 59

Part 3: Functional Correctness Assessment 3.1. DKG Subprotocol

3.1.2 | Initialization and Encryption of Secret Key Share

Relevant Code:
Ei53rc/dkg/decentralized_party/encryption_of_secret_key_share_round.rs]

The Rust code function sample_secret_key_share_and_initialize_proof_aggre-
gation encapsulates the steps necessary for sampling the secret key share and prepar-
ing it for further cryptographic operations:

® Sampling Secret Key Share z;: The secret key share is sampled from a prede-
fined scalar group, ensuring that the keys are cryptographically secure. This is
implemented as follows:

(|
‘ let share_of_decentralized_party_secret_key_share = GroupElement::

‘ < Scalar::sample(&self.scalar_group_public_parameters, rng)?;

\ \

This code snippet directly corresponds to Step 2b of Protocol 4 in the paper,
where each decentralized party samples their secret key share.

m Sampling Randomness p;: Alongside the key share, a corresponding random-
ness value is also sampled to be used in the encryption process:

‘ let encryption_randomness = EncryptionKey::

‘ < RandomnessSpaceGroupElement: :sample(

‘ &self.encryption_scheme_public_parameters

‘ .as_ref() ‘
‘ .randomness_space_public_parameters, rng)?;

(J

This step ensures the unpredictability of the encrypted values, providing addi-
tional security, which reflects the Step 2d of Protocol 4.

® Encryption and Language Enhancement: The sampled key share and the
randomness are used to initialize the enhanced public parameter struct for en-
cryption:

i let language_public_parameters = EnhancedPublicParameters::new(

‘ self.unbounded_encdl_witness_public_parameters.clone(),

‘ self.range_proof_public_parameters.clone(),

‘ language_public_parameters, ‘
| |
\ |

)?;

This setup integrates enhanced cryptographic protocols (e.g., range proofs) to
ensure the robustness and flexibility of the encryption scheme.

Page 17 of 59

Part 3: Functional Correctness Assessment 3.1. DKG Subprotocol

3.1.3 | Preparation for Decentralized Proof Verification

Relevant Code:
Ei:3rc/dkg/decentralized_party/encryption_of_secret_key_share_round.rs]

The encrypted key share and its randomness are then prepared for decentralized proof
verification, facilitating collective validation:

let share_of_decentralized_party_secret_key_share_witness =
< EnhancedLanguage::<
SOUND_PROOFS_REPETITIONS,
RANGE_CLAIMS_PER_SCALAR,
COMMITMENT_SCHEME_MESSAGE_SPACE_SCALAR_LIMBS,
RangeProof,
UnboundedEncDLWitness,
encryption_of_discrete_log::Language<
PLAINTEXT_SPACE_SCALAR_LIMBS,
SCALAR_LIMBS,
GroupElement,
EncryptionKey,
>,
>::generate_witness(
(
EncryptionKey::PlaintextSpaceGroupElement: :new(
Uint::<PLAINTEXT_SPACE_SCALAR_LIMBS>::from(
&share_of_decentralized_party_secret_key_share_value,
)
.into(),
self.encryption_scheme_public_parameters
.plaintext_space_public_parameters(),
)?,
encryption_randomness,
)
.into(),
&language_public_parameters,
rng,
)?;

This snippet illustrates how the cryptographic elements are readied for the next stage
where they will be collectively verified. The code prepares the witness for the decen-
tralized proof verification, ensuring that the encrypted key share is correctly encrypted
and can be validated by other parties in the protocol.

3.1.4 | Decommitment and Verification of Public Key Shares

Relevant Code:
Ei53rc/dkg/centralized_party/decommitment_round.rs]

This section of the cryptographic process deals with the decommitment and verifica-
tion of the cryptographic proofs related to the public key shares. The provided Rust

Page 18 of 59

Part 3: Functional Correctness Assessment 3.1. DKG Subprotocol

implementation validates commitments and ensures the correct reconstruction of
shared public keys.

The function decommit_proof_public_key_share encapsulates the steps necessary
for decommitting and verifying the public key shares:

® Reconstruction of Encrypted Keys: The function begins by reconstructing
the encrypted key shares, verifying that the encryption adheres to the expected
parameters.

| |
‘ let encrypted_decentralized_party_secret_key_share =

‘ EncryptionKey::CiphertextSpaceGroupElement::new(...);

{)

This step ensures that the encrypted keys are reconstructed correctly from the
provided proofs and commitments.

m Verification of Public Key Shares: The public key share from the decentralized
party is then reconstructed:

|
let decentralized_party_public_key_share = GroupElement::new(...);

-
|
| |

This step confirms the authenticity of the public key share, ensuring it matches
the one originally committed to, aligning with step 3 of Protocol 4.

m Verification of Commitment and Proof: The function proceeds to verify
the commitments and the cryptographic proofs associated with the public key
shares:

|
decentralized_party_secret_key_share_encryption_and_proof
.encryption_of_secret_key_share_proof.verify(...);
)

r
|
|
L)

This proof verification ensures that the shared keys and their commitments have
been handled securely and according to the protocol specifications, reflecting
thorough integrity checks.

After successful verification, the function computes the combined public key and
prepares outputs and state transitions for further cryptographic operations:

| |
‘ let public_key = self.public_key_share.clone() + & ‘
‘ < decentralized_party_public_key_share; ‘
\ \

Page 19 of 59

Part 3: Functional Correctness Assessment 3.1. DKG Subprotocol

This step effectively combines the public key shares to form a unified public key, mark-
ing the completion of the decommitment and verification processes. The function
also prepares output structures that encapsulate the results of this phase, facilitating
transparency and traceability of the operations performed.

3.1.5 | Decentralized Party Decommitment Proof Verification Round

Relevant Code:

Ei src/dkg/decentralized_party/decommitment_proof_verification_round.rs}

This part of the cryptographic process involves the verification of commitments and
proofs relating to the public key shares. The Rust implementation validates the de-
commitment and checks the proofs of discrete logs associated with the public keys.

The Rust functionverify_decommitment_and_proof_of_centralized_party_pub-
lic_key_share encapsulates the verification steps:

® Reconstructing and Verifying Commitment: The function begins by recon-
structing the commitment from the public key share disclosed by the centralized
party and comparing it with the original commitment to ensure that it has not
been tampered with:

(|
‘ let reconstructed_commitment = commit_public_key_share(

‘ CENTRALIZED_PARTY_ID, ¢ralized_party_public_key_share,

‘ &decommitment_and_proof.commitment_randomness);

l J

This step confirms the consistency of the value revealed by party A against the
stored commitment, reflecting the integrity checks described in steps 4 and 5
of Protocol 4 in the paper.

m Verification of Proof of Decommitted Value: The cryptographic proof ac-
companying the decommitment is verified to ascertain that it is indeed valid
and corresponds accurately to the shared public key element:

i
‘ decommitment_and_proof.proof.verify(

‘ &self.protocol_context, &language_public_parameters,
‘ vec! [centralized_party_public_key_share.clone()]);

\

~

This verification ensures that the proof of knowledge for the discrete logarithm
of the public key share is correct, as required by the protocol to maintain secu-
rity.

m Aggregate Public Key Construction: Following successful verification, the
public keys from both centralized and decentralized parties are aggregated to
construct the combined public key:

Page 20 of 59

Part 3: Functional Correctness Assessment 3.1. DKG Subprotocol

(|
‘ let public_key = centralized_party_public_key_share.clone() + &

‘ < public_key_share; ‘
\ \

This step combines the public keys from both parties to form a unified public
key, completing the setup for the cryptographic operations that follow, aligning
with Step 4a in Protocol 4.

Page 21 of 59

Part 3: Functional Correctness Assessment 3.2. Presign Subprotocol

3.2 | Presign Subprotocol

Protocol S (Figure A.2) refers to 2PC-MPC’s presign subprotocol, which deals with
preparing and ensuring the integrity and secrecy of the nonce shares used for gener-
ating a digital signature in a distributed manner. It involves several steps, including
the generation of nonces, the creation of cryptographic commitments, and the con-
struction of zero-knowledge proofs to verify these commitments without revealing
the underlying values.

The following sections summarize the functional correctness assessment of the pre-
signing subprotocol as realized in the provided Rust code.

3.2.1 | Step 1: Centralized Party Preparation

Relevant Code:

Ei:3rc/presign/centralized_party/commitment_round.rs}

Step 1 of Protocol S (Figure A.2) involves the centralized party generating a nonce
and creating a cryptographic commitment to it, followed by constructing a proof
that they know the value committed to without revealing it. The provided Rust code
implements these steps through the following mechanisms:

3.2.1.1 | Nonce Generation

The participant samples arandom nonce k4 using the sample_batch method from the
GroupElement :: Scalar structure. This nonce serves as the participant’s contribution
to the protocol.

i let signature_nonce_shares = GroupElement::Scalar::sample_batch(

‘ &self.scalar_group_public_parameters, ‘
‘ batch_size, ‘
} rng, }
|)

)?;

3.2.1.2 | Commitment Generation

A commitment to the nonce k4 is generated using a Pedersen commitment scheme.
This is facilitated by the sample_batch method which samples a random scalar for
the commitment randomness p1.

i let commitment_randomnesses = GroupElement::Scalar::sample_batch(

‘ &self.scalar_group_public_parameters, ‘
‘ batch_size, ‘
} rng, }
|)

1?5

Page 22 of 59

Part 3: Functional Correctness Assessment 3.2. Presign Subprotocol

The commitments are generated using the public parameters derived for the Pedersen
commitment scheme. Each nonce and its corresponding randomness are paired and
used to generate the commitment.

let commitments = signature_nonce_shares_and_commitment_randomnesses
Liter()
.map (| (nonce_share, commitment_randomness)| Pedersen::commit (
nonce_share, commitment_randomness, &
< commitment_scheme_public_parameters

))

.collect::<Vec<_>>();

3.2.1.3 | Proof Construction

Using the maurer :: Proof :: prove method, a zero-knowledge proof of knowledge
for the decommitment of the nonce is constructed. This proof demonstrates that
the participant knows the value k4 and the randomness p; used in the commitment
without revealing them.

let (proof, _) = maurer::Proof::<...>::iprove(
&self.protocol_context,
&language_public_parameters,
signature_nonce_shares_and_commitment_randomnesses
.clone()
.into_iter()
.map (| (nonce_share, commitment_randomness)| {
([nonce_share].into(), commitment_randomness).into()
b
.collect(),
rng,

)?;

3.2.2 | Step 2a: Decentralized Party Nonce and Mask Generation

Relevant Code:
encrypted_masked_key_share_and_public_nonce_shares_round.rs

]2

Step 2a of the protocol involves multiple participants collaboratively preparing to
engage in the cryptographic operations that underpin the multi-party computation
of digital signatures. Specifically, the operations involve sampling masks and nonce
shares, and initiating the process for their secure aggregation and proof verification.

As discussed earlier in this chapter, the primary structure, Party, encompasses all
necessary cryptographic parameters and methods to perform the operations required
in Step 2.

*The file resides in the directory src/presign/decentralized_party.

Page 23 of 59

Part 3: Functional Correctness Assessment 3.2. Presign Subprotocol

3.2.2.1 | Verification of Commitments

This segment verifies the commitments made in the previous steps of the protocol.
Each participant checks the integrity and correctness of the nonce shares committed
by their peers. The verification uses a language and proof system defined within the
protocol, ensuring that all parties hold valid commitments before proceeding.

let centralized_party_nonce_shares_commitments =
centralized_party_nonce_shares_commitments_and_batched_proof
.commitments
.into_iter()
.map(lvalue| GroupElement::new(value, &self.group_public_parameters))
.collect::<group::Result<Vec<_>>>()?;
centralized_party_nonce_shares_commitments_and_batched_proof
.proof
.verify(
&self.protocol_context,
&1_dcom_public_parameters,
centralized_party_nonce_shares_commitments.clone(),

)?;

3.2.2.2 | Sampling of Masks and Nonce Shares

In this step, each participant samples their respective shares of the signature nonce (k;).
The nonces are then converted into a form suitable for encryption, using the public
parameters of the encryption scheme, allowing them to be encrypted in subsequent
steps:

let shares_of_signature_nonce_shares_witnesses = masks_shares
.clone()
.into_iter()
.map (|share_of_signature_nonce_share| {
let share_of_signature_nonce_share_value: Uint<SCALAR_LIMBS> =
share_of_signature_nonce_share.into();

EncryptionKey::PlaintextSpaceGroupElement: :new(
Uint::<PLAINTEXT_SPACE_SCALAR_LIMBS>::from(
&share_of_signature_nonce_share_value,
)
.into(),
self.encryption_scheme_public_parameters
.plaintext_space_public_parameters(),
)
D]

.collect::<group::Result<Vec<_>>>()?;

Page 24 of 59

Part 3: Functional Correctness Assessment 3.2. Presign Subprotocol

Nonce Reuse Vulnerability in Nonce Share Sampling

The implementation of the presigning subprotocol samples a batch of mask
shares for generating nonces (referred to as 7;) and then reuses the same
randomness in the above code for a different cryptographic purpose, namely
generating signature nonce shares (referred to as k;). This results in a nonce
reuse vulnerability, which can lead to the compromise of the cryptographic
operations and the security of the protocol. The vulnerability is disclosed in
detail in Chapter 4.

Subtle Differences in Multiplicative Group Usage

The 2PC-MPC paper’s description of Protocol S (Figure A.2) states that in
Step 1a, k4 should be sampled from Z, and that in Step 2a, the k; nonce
shares should be sampled from Z;. However, the paper does not formally
define Z;. dWallet Labs has clarified that Z; is simply Z, without the 0
element. dWallet Labs further emphasized that given the size of Z, the
probability of k4 or k; being sampled as 0 is negligible, and that therefore
either Z, or Z; may be used for sampling k4 and k;.

In addition, the implementation will output an error if:

B The inversion of k4 by the centralized party in the first steps of
Protocol 6 (Figure A.3) fails, which appears to only be possible if
ka = 0 mod q.

B The inversion of pt, by a decentralized party in the final steps of
Protocol 6 (Figure A.3) fails, which appears to only be possible if
sum;(k;) = kg = 0 mod q.

Following the sampling of k;, the protocol requires the generation of masks encryp-
tion randomness (1" ky), masked key share encryption randomness ()’ . k2) and
encryption randomness (7.,) for each nonce share. Each randomness variable
serves a specific purpose within the cryptographic framework of the protocol:

[nfmskl (masks_encryption_randomness): Used to encrypt the mask shares
(74), securing the mask values for computation of ct} and ct’. Sampled here:

let masks_encryption_randomness = EncryptionKey::
< RandomnessSpaceGroupElement: :sample_batch(
self.encryption_scheme_public_parameters
.randomness_space_public_parameters(),
batch_size,
rng,

)?;

] nfmskrz (masked_key_share_encryption_randomness): Employed to encrypt
the masked key shares, which are computed by combining mask shares with a
confidential key component. Sampled here:

Page 25 of 59

Part 3: Functional Correctness Assessment 3.2. Presign Subprotocol

let masked_key_share_encryption_randomness =
EncryptionKey::RandomnessSpaceGroupElement: :sample_batch(
self.encryption_scheme_public_parameters
.randomness_space_public_parameters(),
batch_size,
rng,
)?;

| 771inask3 (shares_of_signature_nonce_sha res_encryption_randomness): Uti-
lized for encrypting the nonce shares (k;), critical for signature generation pro-
cesses. Sampled here:

let shares_of_signature_nonce_shares_encryption_randomness =
EncryptionKey: :RandomnessSpaceGroupElement: :sample_batch(
&self
.encryption_scheme_public_parameters
.as_ref()
.randomness_space_public_parameters,
batch_size,
rng,
)?;

3.2.3 | Step 2a: Decentralized Party Mask Encryption

Relevant Code:
E src/presign/decentralized_party. rs]

The randomness elements sampled above are crucial for maintaining confidentiality
and integrity in the cryptographic operations:

m ct} (encrypted_masks): Generated by encrypting ; using 77, .., :

let encrypted_masks: Vec<_> = masks_and_encrypted_masked_key_share
Liter()
.map(|mask_and_encrypted_masked_key_share| {
mask_and_encrypted_masked_key_share
.language_statement ()
.encrypted_multiplicand()
.value()
D)
.collect();

= ct)(enc rypted_masked_key_sha res): Resulting from the encryption of masked
key shares using ;... :

Page 26 of 59

Part 3: Functional Correctness Assessment 3.2. Presign Subprotocol

let encrypted_masked_key_shares: Vec<_> =

< masks_and_encrypted_masked_key_share

Liter()

.map(|mask_and_encrypted_masked_key_share| {

mask_and_encrypted_masked_key_share

.language_statement ()
.encrypted_product()
.value()

D)

.collect();

m ct} (encrypted_nonces): Produced by encrypting k; using nfnaskg), essential
for securely sharing nonce shares among participants:

let encrypted_nonces: Vec<_> =

< encrypted_nonce_shares_and_public_shares

Liter()

.map(|nonce_share_encryption_and_public_sharel| {

nonce_share_encryption_and_public_share

.language_statement ()
.encrypted_discrete_log()
.value()

D)

.collect();

The Encrypted Diffie-Hellman (EncDH) and Encrypted Discrete Logarithm (EncDL)
public parameters facilitate the secure encryption and verification of these elements.
Enhanced public parameters integrate range proofs.

The tuples (i, 7,4 " N s k2) and (k;, 1’ . ks) are mapped to their respective com-
mitment structures, preparing them for secure multiparty computations. These map-
pings are used in commitment rounds to generate commitments and statements for
zero-knowledge proofs, verifying operation correctness without revealing inputs:

let witnesses = mask_shares_witnesses
.clone()
.into_iter()
.zip(
masks_encryption_randomness
.clone()
.into_iter()
.zip(masked_key_share_encryption_randomness),
)
.map (
I

mask_share,

Page 27 of 59

Part 3: Functional Correctness Assessment 3.2. Presign Subprotocol

(
mask_share_encryption_randomness,
masked_secret_key_share_encryption_randomness,
),
) q
(
mask_share,
mask_share_encryption_randomness,
masked_secret_key_share_encryption_randomness,
)
.into()
1,
)
.collect();

3.2.4 | Step 2b: Initialize Proof Aggregation
Relevant Code:

Ei53rc/presign/decentralized_party/encrypted_masked_nonces_round.rs]

Step 2b of the protocol involves aggregating proofs related to the encrypted nonce
shares and masked key shares, which is a continuation of the secure handling of cryp-
tographic elements initiated in Step 2a.

The function initialize_proof_aggregationisresponsible for setting up the proof
aggregation necessary for the MPC aspects of the presign protocol.

The function begins by ensuring that the number of tuples (ct1, ct2) provided matches
the expected batch size:

| |
‘ if masks_and_encrypted_masked_key_share.len() != batch_size {

‘ return Err(Error::InvalidParameters); ‘
|)

}

This step extracts cty, the encrypted masks, from each tuple:

i let encrypted_masks: Vec<_> = masks_and_encrypted_masked_key_share

‘ .iter() |
‘ .map(|statement| statement.encrypted_multiplicand().clone())

‘ .collect(); |
K)

Here, the function samples randomness (7’ ks), which is used later in the encryp-
tion of masked nonces, aligning with Step 2b (iii) of the protocol.

Page 28 of 59

Part 3: Functional Correctness Assessment 3.2. Presign Subprotocol

let masked_nonce_encryption_randomness =
EncryptionKey: :RandomnessSpaceGroupElement: :sample_batch(
self.encryption_scheme_public_parameters.
< randomness_space_public_parameters(),
batch_size,
rng,
)?;

The function then maps tuples of encrypted masks, nonce shares, and their associated
randomness into a new data structure for further processing. The following step in-
volves generating cryptographic witnesses for each tuple. These witnesses are used to
create commitments and statements essential for zero-knowledge proofs:

EnhancedLanguage: :<
SOUND_PROOFS_REPETITIONS,
RANGE_CLAIMS_PER_SCALAR,
COMMITMENT_SCHEME_MESSAGE_SPACE_SCALAR_LIMBS,
RangeProof,
UnboundedEncDHWitness,
encryption_of_tuple::Language<
PLAINTEXT_SPACE_SCALAR_LIMBS,
SCALAR_LIMBS,
GroupElement,
EncryptionKey,
>,
>::generate_witness(
(
nonce,
nonces_encryption_randomness,
masked_nonces_encryption_randomness,

.into(),
&enc_dh_public_parameters,
rng,

)

.map_err(Error::from)

The final step involves setting up a commitment round where the encrypted data, along
with their commitments, are processed to later generate ct); using enhanced-maurer:

i enhanced_maurer::aggregation::commitment_round::Party::<

\ SOUND_PROOFS_REPETITIONS, \
\ RANGE_CLAIMS_PER_SCALAR, \
\ COMMITMENT_SCHEME_MESSAGE_SPACE_SCALAR_LIMBS, \
‘ RangeProof, ‘
‘ UnboundedEncDHWitness,

Page 29 of 59

Part 3: Functional Correctness Assessment 3.2. Presign Subprotocol

encryption_of_tuple::Language<
PLAINTEXT_SPACE_SCALAR_LIMBS,
SCALAR_LIMBS,
GroupElement,
EncryptionKey,
>I
ProtocolContext,
>::new_session(
self.party_id,
self.parties.clone(),
enc_dh_public_parameters,
self.protocol_context.clone(),
vec! [witness],
rng,
)

.map_err(Error::from);

-

3.2.5 | Step 3: Centralized Party Verification of Presign Output

Relevant Code:

E’ssrc/presign/centralized_party/proof_verification_round.rs]

This step involves verifying the outputs of the presigning process, specifically the
encrypted components and their associated proofs. The function takes a batch of
outputs, verifies each for consistency and correctness, and generates a verified output
list.

3.2.5.1 | Input Validation

The function first ensures that the size of various batched outputs matches the ex-
pected batch size. This check ensures that the number of encrypted masks, encrypted
masked key shares, and nonce public shares are all consistent, preventing any misalign-
ment in the batch processing that follows.

if output.encrypted_masked_key_shares.len() != batch_size
|| output.encrypted_masks.len() != batch_size
|| output.nonce_public_shares.len() != batch_size

return Err(Error::InvalidParameters);

3.2.5.2 | Decryption and Verification of Encrypted Data

The function processes encrypted data, including masks and masked key shares, by
converting them into suitable cryptographic structures for verification. This is done us-
ing predefined public parameters from the encryption scheme. Each encrypted mask

Page 30 of 59

Part 3: Functional Correctness Assessment 3.2. Presign Subprotocol

is restructured using the ciphertext space public parameters to ensure it is correctly
formatted for subsequent cryptographic operations.

let encrypted_masks = output
.encrypted_masks
.clone()
.into_iter()
.map(lencrypted_mask| EncryptionKey::CiphertextSpaceGroupElement: :new
— (
encrypted_mask,
self.encryption_scheme_public_parameters.
< ciphertext_space_public_parameters(),

))

.collect::<group::Result<Vec<_>>>()?;

3.2.5.3 | Verification of Range Proofs

Following decryption, the function verifies the range proofs associated with the key
share masking process. The proofs for masks and encrypted masked key shares are
verified against a set of statements that bind these elements together, ensuring that the
encryption and the proof of correct encryption (range proof) are valid and consistent.

let statements = encrypted_masks
.into_iter()
.zip(encrypted_masked_key_shares)
.zip(key_share_masking_range_proof_commitments)
.map (

I
(encrypted_mask, encrypted_masked_key_share),

key_share_masking_range_proof_commitment,
) {
(

key_share_masking_range_proof_commitment,
[encrypted_mask, encrypted_masked_key_share].into(),

.into()
1,
)
.collect();

output.masks_and_encrypted_masked_key_share_proof.verify(
&self.protocol_context,
&language_public_parameters,
statements,
rng,

)?;

Page 31 of 59

Part 3: Functional Correctness Assessment 3.2. Presign Subprotocol

3.2.5.4 | Handling of Nonce Public Shares

The function also processes nonce public shares, which are part of the output from
the decentralized parties. Each nonce public share is processed to ensure it is in the
correct cryptographic format, aligning with the group’s public parameters.

let decentralized_party_nonce_public_shares = output
.nonce_public_shares
.clone()
.into_iter ()
.map(lnonce_public_share| GroupElement::new(
nonce_public_share, &self.group_public_parameters
))

.collect::<group::Result<Vec<_>>>()?;

3.2.5.5 | Final Output Construction

Upon successful verification of all components and proofs, the function constructs the
final verified presign output, encapsulating core elements like nonce shares, encrypted
masks, and encrypted masked key shares. This segment constructs the final output
for the presigning process, encapsulating all necessary cryptographic components
required for the secure generation of a digital signature in a decentralized setting.

Ok (output
.nonce_public_shares
.into_iter()
.zip(
output.encrypted_masks.into_iter().zip(
output.encrypted_masked_key_shares.into_iter().zip(
self.signature_nonce_shares_and_commitment_randomnesses),
),
)
.map (
I
decentralized_party_nonce_public_share,
(
encrypted_mask,
(encrypted_masked_key_share, (nonce_share,
<> commitment_randomness)),

),

) q
Presign {

nonce_share: nonce_share.value(),
N

decentralized_party_nonce_public_share,
s

encrypted_mask,
[SEEN

Page 32 of 59

Part 3: Functional Correctness Assessment 3.2. Presign Subprotocol

encrypted_masked_key_share,
cﬁ

commitment_randomness: commitment_randomness.value(),
¢_>

}
1,

)
.collect())

Page 33 of 59

Part 3: Functional Correctness Assessment 3.3. Sign Subprotocol

3.3 | Sign Subprotocol

Protocol 6 (Figure A.3) in the 2PC-MPC paper [2] describes the sign subprotocol,
which involves the generation of a decentralized digital signature. The protocol con-
sists of several steps; the following sections summarize the functional correctness
assessment of the sign subprotocol as realized in the provided Rust code.

3.3.1 | Step 1: Centralized Party Signature and Proof Setup
Relevant Code:

E src/sign/centralized_party/signature_homomorphic_evaluation_round. rs]

Out of Order Operations in Implementation

The implementation for Step 1, while functionally correct, strongly differs
in ordering from the protocol steps as illustrated in the paper (Figure A.3)).
This is due to the nature of the cryptographic operations and the need to
optimize the code for performance and efficiency. In case the summary here
is unclear, please refer to the actual code for a more detailed understanding.

The function evaluate_encrypted_partial_signature_prehash aims to evaluate
the encrypted partial signature by utilizinghomomorphic encryption and zero-knowledge
proofs to ensure the security and integrity of the operations.

The nonce share (k4) is inverted and multiplied by the decentralized party’s public
nonce share to compute the public nonce (R), as specified in Step 1a of the protocol:

let inverted_nonce_share = self.nonce_share.invert();
let public_nonce = inverted_nonce_share * self.
< decentralized_party_nonce_public_share;

~

0
|
|
|
L

Relevant values are also computed here, as part of a combined execution of Step 1b
and le:

] UA:

(
‘ let nonce_share_by_key_share_commitment = statement.

‘ < altered_base_committment_of_discrete_log().clone();
l

\ h
let nonce_x_coordinate = public_nonce.x(); ‘
\ j

Page 34 of 59

Part 3: Functional Correctness Assessment 3.3. Sign Subprotocol

(
‘ let first_coefficient = (nonce_x_coordinate * self.nonce_share *
‘ — self.secret_key_share) + (message * self.nonce_share);
(

(|
let second_coefficient = nonce_x_coordinate * self.nonce_share;
l J

Operations are performed relatively The Lpconp. proof for Step le dash 1 is then com-

puted:

let (public_nonce_proof, _) = maurer::Proof::<
SOUND_PROOFS_REPETITIONS,
committment_of_discrete_log::Language<
SCALAR_LIMBS,
GroupElement::Scalar,
GroupElement,
Pedersen<1, SCALAR_LIMBS, GroupElement::Scalar, GroupElement>,
>I
ProtocolContext,
>::iprove(
&self.protocol_context,
&language_public_parameters,
vec![[self.nonce_share, self.nonce_share_commitment_randomness].into
— 01,
rng,

)?;

Then, a zero-knowledge proof of the public nonce’s integrity is generated, using the
previous commitment of discrete log parameters. This step secures the nonce’s contri-
bution to the signature, preventing adversaries from deriving the nonce or the private

keys. This aligns with Steps 1d and 1e dash 3 of the protocol.

The following function performs homomorphic evaluations and generates proofs for
these evaluations. These operations ensure that the encrypted signature component,
s', adheres to the protocol’s security requirements, providing a verifiable way to ensure
the computations were performed correctly without revealing the underlying values.

i let (encrypted_partial_signature_proof, statement) = enhanced_maurer::

‘ <> Proof::<

\ SOUND_PROOFS_REPETITIONS, \
\ NUM_RANGE_CLAIMS, \

Page 35 of 59

Part 3: Functional Correctness Assessment 3.3. Sign Subprotocol

COMMITMENT _SCHEME_MESSAGE_SPACE_SCALAR_LIMBS,
RangeProof,
UnboundedDComEvalWitness,
committed_linear_evaluation::Language<
PLAINTEXT_SPACE_SCALAR_LIMBS,
SCALAR_LIMBS,
RANGE_CLAIMS_PER_SCALAR,
RANGE_CLAIMS_PER_MASK,
DIMENSION,
GroupElement,
EncryptionKey,
>I
ProtocolContext,
>::iprove(
&self.protocol_context,
&language_public_parameters,
vec![witness],
rng,

)?;

Finally, the function packages the computed values and their corresponding proofs
into a structure that will be used in subsequent verification steps of the protocol. This
includes the public nonce, the encrypted partial signature, and all associated zero-

knowledge proofs.

3.3.2 | Step 2: Decentralized Party Proof Verification and Signature
Setup

In Step 2 of the protocol, the decentralized party verifies the encrypted partial signa-
ture and the associated zero-knowledge proofs. The party then proceeds to generate
the encrypted partial signature and the corresponding zero-knowledge proof for the
signature’s homomorphic evaluation.

3.3.2.1 | Steps 2a, 2b: Signature Partial Decryption Round

Relevant Code:
Eissrc/sign/decentralized_party/signature_partial_decryption_round.rs]

The function verify_encrypted_signature_parts_prehash_inner is designed to
verify the encrypted parts of a signature and associated zero-knowledge proofs in a
secure multi-party computation setting.

The function begins by reconstructing the public nonce (R) from its components.
This is followed by verifying the zero-knowledge proof of R, ensuring it was con-
structed correctly:

Page 36 of 59

Part 3: Functional Correctness Assessment 3.3. Sign Subprotocol

public_nonce_encrypted_partial_signature_and_proof
.public_nonce_proof
verify(
protocol_context,
&language_public_parameters,
vec! [[
centralized_party_nonce_share_commitment.clone(),
nonce_public_share.clone(),
]
.into ()1,

)?;

Similarly, the code verifies the ratio between committed values, ensuring that the
relation Lpcopratio described in [2] is maintained:

public_nonce_encrypted_partial_signature_and_proof
.nonce_share_by_key_share_proof
.verify(
protocol_context,
&language_public_parameters,
vec! [[
centralized_party_nonce_share_commitment.clone(),
nonce_share_by_key_share_commitment.clone(),
1
.into()],

)?;

Finally, the function generates a range proof commitment and bundles it into a call
that also verifies the committed evaluations that compute the encrypted signature
components, ensuring they meet the protocol’s specified homomorphic properties,
thereby implementing the last segment of Step 2a as well as Step 2b of the protocol
simultaneously. The way this is done differs significantly from the paper: the zero-
knowledge statements are reconstructed natively as described in Step 2b, and the
statements sent by the other parties are not used:

let range_proof_commitment = proof::range::
< CommitmentSchemeCommitmentSpaceGroupElement::<
COMMITMENT_SCHEME_MESSAGE_SPACE_SCALAR_LIMBS,
NUM_RANGE_CLAIMS,
RangeProof,
>:inew(
public_nonce_encrypted_partial_signature_and_proof
.encrypted_partial_signature_range_proof_commitment,
range_proof_public_parameters
.commitment_scheme_public_parameters()

Page 37 of 59

Part 3: Functional Correctness Assessment 3.3. Sign Subprotocol

.commitment_space_public_parameters(),
)?;

public_nonce_encrypted_partial_signature_and_proof
.encrypted_partial_signature_proof
.verify(
protocol_context,
&language_public_parameters,
vec! [(
range_proof_commitment,
(
encrypted_partial_signature.clone(),
[
((nonce_x_coordinate =*
< nonce_share_by_key_share_commitment)
+ (message * &
< centralized_party_nonce_share_commitment)),
(nonce_x_coordinate * &
— centralized_party_nonce_share_commitment),

1

.into(),
)
.into(),
)
.into()],
rng,

)?;

3.3.2.2 | Step 2c: Signature Threshold Decryption Round

Relevant Code:
Ei53rc/sign/decentralized_party/signature_threshold_decryption_round.rs]

The function decrypt_signature is tasked with the final decryption and verification
of the signature components. This process is split into several key phases. The func-
tion starts by verifying that the set of decryption shares provided meets the expected
criteria:

|
if decrypters.len() != usize::from(self.threshold) || ‘
return Err(Error::InvalidParameters); ‘

)

r
|
|
L

The decryption shares are then combined to form the actual components of the sig-
nature:

3Supporting code may be found in src/sign/decentralized_party/signature_partial_-
decryption_round.rs.

Page 38 of 59

Part 3: Functional Correctness Assessment 3.3. Sign Subprotocol

let partial_signature: Uint<PLAINTEXT_SPACE_SCALAR_LIMBS> =
DecryptionKeyShare::combine_decryption_shares_semi_honest (
partial_signature_decryption_shares,
lagrange_coefficients.clone(),
&self.decryption_key_share_public_parameters,
)?
Linto();
let partial_signature = GroupElement::Scalar::new(
partial_signature.reduce(&group_order).into(),
&self.scalar_group_public_parameters,

)?;

The masked nonce, which is a product of the nonce and the key share, is derived and
inverted:

let masked_nonce: Uint<PLAINTEXT_SPACE_SCALAR_LIMBS> =
DecryptionKeyShare::combine_decryption_shares_semi_honest(
masked_nonce_decryption_shares,
lagrange_coefficients,
&self.decryption_key_share_public_parameters,
)?
.into();
let masked_nonce = GroupElement::Scalar::new(
masked_nonce.reduce(&group_order).into(),
&self.scalar_group_public_parameters,

)?;

let inverted_masked_nonce = masked_nonce.invert();
if inverted_masked_nonce.is_none().into() {
return Err(Error::SignatureVerification);

This inversion is crucial for calculating the final signature scalar s. The signature scalar
s is computed by multiplying the inverted masked nonce with the partial signature:

| |
‘ let signature_s = inverted_masked_nonce.unwrap() * partial_signature;
‘ let negated_signature_s = signature_s.neg(); ‘
|)

This computation directly follows the mathematical operations outlined in the proto-
col for final signature generation.

Page 39 of 59

Part 3: Functional Correctness Assessment 3.3. Sign Subprotocol

To prevent signature malleability, the function then computes s and ¢ — s and selects
the smaller value:

‘ let signature_s = if negated_signature_s.value() < signature_s.value() {

‘ negated_signature_s

‘ 1 else {

‘ signature_s ‘
b |
K)

This step ensures that the signature conforms to the standards required for ECDSA,
where the scalar component of the signature must be within specific bounds.

Finally, the computed signature (r, s) is verified:

verify_signature(
self.nonce_x_coordinate,
signature_s,
self.message,
self.public_key,

)?;

Page 40 of 59

Security Assessment

This chapter presents a security assessment of the provided Rust implementation of
the 2PC-MPC protocol. The assessment focuses on identifying potential vulnera-
bilities, weaknesses, and deviations from best practices that could compromise the
security of the cryptographic operations and the overall protocol.

The security assessment is based on a review of the codebase, with particular attention
given to the handling of sensitive data, the implementation of cryptographic primi-
tives, and the adherence to secure coding practices. The assessment aims to uncover
any security issues that could lead to unauthorized access, data leakage, or the com-
promise of the protocol’s integrity.

For each finding, the assessment provides detailed explanations of the issue, including
relevant code snippets and the potential impact on the security of the protocol. Ad-
ditionally, the assessment offers specific recommendations and mitigation strategies
to address the identified vulnerabilities and strengthen the overall security posture of
the 2PC-MPC implementation.

4.1 | DW-01-001 Nonce Reuse in Decentralized Party Pre-
signing Step

Severity: Critical

The reuse of nonces in the decentralized party presigning step has been identified as a
critical security vulnerability. Nonce reuse in cryptographic operations can lead to a
range of attacks, most notably allowing adversaries to potentially recover private keys
or forge signatures.

The implementation of the presigning subprotocol samples a batch of mask shares
for generating nonces (referred to as ;) and then reuses the same randomness for a
different cryptographic purpose, namely generating signature nonce shares (referred
to as k;). The specific issue arises in the following code segment:

E encrypted_masked_key_share_and_public_nonce_shares_round. rs}

Page 41 of 59

Part 4: Security Assessment 4.2. DW-01-002

p
let masks_shares = GroupElement::Scalar::sample_batch(
&self.scalar_group_public_parameters,
batch_size,
rng,
)?;
let mask_shares_witnesses = masks_shares
.clone()
.into_iter()
.map(lshare| { EncryptionKey::PlaintextSpaceGroupElement::new(...).
— into() })
.collect::<group::Result<Vec<_>>>()?;

let shares_of_signature_nonce_shares_witnesses = masks_shares
.clone()
.into_iter()
.map(lsharel { EncryptionKey::PlaintextSpaceGroupElement::new(...).
— into() })
.collect::<group::Result<Vec<_>>>()?;

This repeated use of the same randomness for both 7; and k; violates the fundamen-
tal cryptographic principle that nonces should be unique and unpredictable. Such
practices can compromise the integrity and security of the cryptographic scheme.

Recommendation: Revise Nonce Handling Procedures

Modify the implementation to ensure that unique randomness is used for each
cryptographic operation. This may involve generating new random values for

® each instance where a nonce is required. Additionally, conduct a thorough
review of all cryptographic operations to ensure compliance with best prac-
tices concerning nonce management. Optionally, implement automated tests to
check for unintended nonce reuse across the codebase.

4.2 | DW-01-002 Insufficient Checks on ComputationalSe-
curitySizedNumber Type

Severity: Low

The ComputationalSecuritySizedNumber type is implemented as a simple alias to
U128 without additional checks, potentially allowing values with insufficient entropy
to be used in security-sensitive contexts.

Relevant Code:
E group/src/lib.rs]

Page 42 of 59

Part 4: Security Assessment 4.3. DW-01-003

The ComputationalSecuritySizedNumber type is intended to represent values with
sufficient computational security, typically requiring a minimum of 128 bits of entropy.
However, the current implementation of ComputationalSecuritySizedNumber isa
simple alias to the U128 type, without any additional checks or restrictions on the
values that can be assigned to it.

This lack of checks poses a potential security risk, as values with insufficient entropy
could be inadvertently or maliciously cast to ComputationalSecuritySizedNumber
and used in security-sensitive operations. For example, a U64 value with only 64 bits
of entropy could be cast to ComputationalSecuritySizedNumber, violating the in-
tended security properties of the type.

Using values with insufficient entropy in cryptographic operations can weaken the
overall security of the system. Attackers may be able to exploit this weakness to per-
form brute-force attacks, guess secret values, or compromise the integrity of the cryp-
tographic primitives used in the 2PC-MPC protocol.

To address this issue, it is essential to enforce strict checks and validation on the val-
ues assigned to ComputationalSecuritySizedNumber to ensure that they meet the
required entropy criteria. This can be achieved through a combination of compile-
time and runtime checks.

Recommendation: Implement Strict Validation

Implement compile-time checks using Rust’s type system to restrict the assign-
ment of values to ComputationalSecuritySizedNumber. This can be achieved
by creating a new type that wraps U128 and provides a private constructor. The
constructor should enforce the entropy requirements and only allow the creation
of instances that meet the criteria. In addition, introduce runtime checks in the
o constructors and methods of ComputationalSecuritySizedNumber to validate
the entropy of the input values. If a value fails to meet the entropy requirements,
an error should be returned or the operation should be aborted. Finally, pro-
vide secure conversion methods between ComputationalSecuritySizedNumber
and other primitive types, such as Ué64, that perform the necessary entropy
checks. These conversion methods should be the only way to create instances of
ComputationalSecuritySizedNumber from other types.

4.3 | DW-01-003 No Zeroization of Secrets in Memory

Severity: Low
The 2PC-MPC crate does not zeroize secrets in memory after they are no longer
needed, potentially leaving sensitive data vulnerable to unauthorized access.

The 2PC-MPC crate performs various cryptographic operations that involve sensitive
data, such as secret keys, nonces, and other private values. However, the crate does

Page 43 of 59

Part 4: Security Assessment 4.3. DW-01-003

not take any measures to securely erase these secrets from memory once they are
no longer required. This lack of zeroization leaves the sensitive data vulnerable to
potential unauthorized access or exploitation.

In the event of a memory disclosure vulnerability or a memory dump, an attacker
could potentially access the unzeroized secrets, compromising the security of the
cryptographic operations and the overall protocol. This is particularly concerning
given the distributed nature of the 2PC-MPC protocol, where multiple parties are
involved, and the security of the entire system depends on the confidentiality of the
shared secrets.

The Rust implementation of 2PC-MPC involves numerous complex cryptographic
operations and protocol steps, resulting in the generation and handling of a significant
number of intermediate values. These intermediate values often contain sensitive
information derived from the secret keys, nonces, and other private data used in the
protocol.

Due to the high complexity of the codebase and the extensive use of generic types
and traits, identifying and tracking all the intermediate values that require zeroization
can be a challenging task. The intermediate values may be stored in various data
structures, passed as function arguments, or returned as results, making it difficult to
ensure comprehensive zeroization without a thorough analysis of the entire codebase.

To effectively implement zeroization in the 2PC-MPC crate, a comprehensive deep-
dive into the codebase is necessary. This involves carefully examining each crypto-
graphic operation and protocol step to identify all the intermediate values that contain
sensitive information. Special attention should be given to the following aspects:

1. Identifying Sensitive Data: Analyze the codebase to identify all the data struc-
tures, variables, and function parameters that store or handle sensitive informa-
tion, such as secret keys, nonces, and intermediate values derived from them.

2. Tracing Data Flow: Follow the flow of sensitive data throughout the codebase,
including function calls, assignments, and data transformations, to ensure that
all intermediate values are properly identified and tracked.

3. Determining Intermediate Values Lifecycle: Assess the lifecycle of each inter-
mediate value to determine the appropriate point at which it should be zeroized.
This includes identifying when the value is no longer needed and ensuring that
zeroization occurs before the memory is deallocated or reused.

4. Implementing Zeroization: Modify the codebase to implement zeroization
for all identified intermediate values. This may involve adding calls to the “ze-
roize()‘ method at the appropriate points, ensuring that the memory is securely
erased before it is released or overwritten.

Page 44 of 59

Part 4: Security Assessment 4.3. DW-01-003

Conducting a comprehensive deep-dive into the 2PC-MPC codebase to identify and
zeroize all intermediate values is a substantial undertaking. It requires a thorough un-
derstanding of the cryptographic operations, protocol steps, and the overall structure
of the codebase.

Recommendation: Use the Rust zeroize crate

Utilize the Rust zeroize crate [8] to securely erase sensitive data from mem-
ory. The zeroize crate provides a simple and efficient way to zeroize memory

® locations that contain secrets. By implementing the Zeroize trait for sensitive
data structures and calling the zeroize () method when the data is no longer
needed, the crate ensures that the secrets are overwritten with zeroes, effectively
preventing their recovery.

Page 45 of 59

Conclusions

This report presented a comprehensive analysis and assessment of the provided Rust
implementation of the 2PC-MPC protocol. Its focus has been on evaluating the func-
tional correctness and security aspects of the implementation, with the goal of identi-
fying potential issues, vulnerabilities, and areas for improvement.

5.1 | Summary of Core Assessments

The functional correctness assessment, presented in Chapter 3, involved a detailed
examination of the three main subprotocols: the DKG subprotocol, the presign sub-
protocol, and the sign subprotocol. Implementations of each subprotocol were care-
fully reviewed, comparing them against the specifications outlined in the 2PC-MPC
paper. The assessment found that the implementation generally aligns with the proto-
col descriptions, with the cryptographic operations and protocol steps being correctly
realized in the Rust code. However, it is important to note that the assessment was
conducted on a best-effort basis due to the high complexity of the target, and further
analysis is recommended to ensure complete functional correctness.

The security assessment, covered in Chapter 4, focused on identifying potential vulner-
abilities and weaknesses in the implementation that could compromise the security of
the cryptographic operations and the overall protocol. Three main security findings of
varying severity levels were reported. The critical issue of nonce reuse in the decentral-
ized party presigning step highlights the importance of properly handling nonces to
prevent attacks such as private key recovery or signature forgery. The medium severity
issue of insufficient checks on the ComputationalSecuritySizedNumber type em-
phasizes the need for strict validation and entropy requirements for security-sensitive
values. Lastly, the low severity issue of lack of zeroization of secrets in memory un-
derscores the significance of securely erasing sensitive data to prevent unauthorized
access.

Page 46 of 59

Part 5: Conclusions 5.2. Note on Target Code Complexity

5.2 | Note on Target Code Complexity

In addition to our core assessments, a notable observation during our analysis was the
exceptionally high complexity of the Rust implementation. The 2PC-MPC protocol
itself is intricate, involving multiple parties, cryptographic primitives, and protocol
steps. The Rust implementation adds an additional layer of complexity due to its use
of advanced language features, such as generics and traits, to encapsulate the crypto-
graphic operations and protocol logic. While the use of these features provides flexi-
bility and modularity, it can also make the codebase more challenging to understand,
maintain, and audit. The complexity of the code increases the risk of introducing
subtle bugs or vulnerabilities that may be difficult to detect and fix.

To address the complexity issue and improve the overall quality and security of the
implementation, we recommend the following strategies for future development:

m Code Simplification: Wherever possible, aim to simplify the codebase by
breaking down complex functions and structures into smaller, more manageable
units. Use clear and descriptive naming conventions for variables, functions,
and types to enhance code readability and understanding.

m Comprehensive Documentation: Provide detailed documentation for the
codebase, including comments explaining the purpose and functionality of each
component, as well as high-level descriptions of the protocol steps and cryp-
tographic operations. Clear documentation will facilitate code review, mainte-
nance, and future enhancements.

® Rigorous Testing: Implement a comprehensive testing strategy that covers
both unit tests and integration tests. Write test cases that exercise all possi-
ble code paths and edge cases, ensuring the correctness and robustness of the
implementation. Consider utilizing property-based testing techniques to auto-
matically generate test cases and uncover hidden bugs.

m Security Audits: Conduct additional security audits on a regular schedule, fo-
cusing on the identification and mitigation of potential vulnerabilities. Engage
external security experts to perform thorough code reviews and security assess-
ments, providing an independent perspective on the implementation’s security
posture.

m Community Engagement: Foster an active and collaborative community around
the 2PC-MPC implementation. Encourage open-source contributions, bug
reports, and feedback from the wider cryptographic and security community.
Engaging with the community will help identify and address potential issues,
improve the implementation’s quality, and promote its adoption and trust.

Our analysis of the provided Rust implementation of the 2PC-MPC protocol has
highlighted both its strengths and areas for improvement. While the implementation

Page 47 of 59

Part 5: Conclusions 5.3. Future Work

generally adheres to the protocol specifications, the high complexity of the codebase
and the identified security findings warrant further attention and mitigation efforts.
By addressing the complexity issue through code simplification, comprehensive doc-
umentation, rigorous testing, and regular security audits, the implementation can be
enhanced to ensure its correctness, security, and maintainability.

We hope that the findings and recommendations presented in this report will serve
as a valuable resource for the ongoing development and enhancement of the 2PC-
MPC protocol and its Rust implementation. By addressing the identified issues and
following best practices in secure software development, the implementation can be
strengthened to provide a robust and trustworthy foundation for secure multi-party
computation in various applications and domains.

5.3 | Future Work

While this report provides a comprehensive analysis of the functional correctness
and security aspects of the provided Rust implementation of the 2PC-MPC protocol,
there are several areas that warrant further exploration and development. In this sec-
tion, we propose potential avenues for future work to enhance the protocol’s security,
efficiency, and usability.

5.3.1 | In-Depth Cryptographic Review

Although our assessment covered the functional correctness and security of the im-
plementation, a more in-depth cryptographic review would be beneficial. This review
should focus on the underlying cryptographic primitives, their theoretical founda-
tions, and their suitability for the specific requirements of the 2PC-MPC protocol.
A thorough analysis of the cryptographic constructions, including the choice of zero
knowledge and Additively Homomorphic Encryption (AHE) primitives, encryption
schemes, and zero-knowledge proof systems, would provide additional assurance re-
garding the protocol’s security and help identify any potential weaknesses or improve-
ments.

5.3.2 | Cryptographic Optimizations

The currentimplementation of the 2PC-MPC protocol relies on various cryptographic
operations, such as homomorphic encryption, zero-knowledge proofs, and secure
multi-party computation. While these cryptographic primitives provide strong se-
curity guarantees, they can also introduce computational overhead and impact the
protocol’s efficiency. Future work could explore optimizations to the underlying cryp-
tographic constructions to improve performance without compromising security.

Potential optimizations include:

Page 48 of 59

Part 5: Conclusions 5.3. Future Work

m Investigating alternative cryptographic primitives (zero knowledge construc-
tions, AHE, etc.) representations and arithmetic that offer faster computation
times while maintaining the required security level.

m Exploring more efficient homomorphic encryption schemes that reduce the
computational cost of encryption and decryption operations.

» Optimizing the zero-knowledge proof systems to minimize the proof generation
and verification times, as well as the size of the proofs.

® Implementing parallelization techniques to leverage multi-core processors and
distribute the computational workload across multiple threads or machines.

By optimizing the cryptographic constructions, the 2PC-MPC protocol can achieve
better performance, scalability, and practicality for real-world applications.

5.3.3 | Protocol API Correctness and Usability

The provided Rust implementation of the 2PC-MPC protocol can be viewed as a
protocolin itself, with its own API and communication interfaces. Future work should
focus on analyzing the correctness and usability of the protocol API to ensure that it
is well-defined, consistent, and easy to use for developers and users.

This analysis should include:

® Reviewing the API documentation to ensure that it is clear, comprehensive, and
accurately reflects the protocol’s functionality and usage.

m Verifying the correctness of the API endpoints, input/output formats, and error
handling mechanisms to prevent any inconsistencies or unexpected behavior.

m Assessing the ease of use and intuitiveness of the API, considering factors such
as function naming conventions, parameter ordering, and default values.

m Conducting usability testing with developers and users to gather feedback on
the API’s design, documentation, and overall user experience.

By ensuring the correctness and usability of the protocol AP, the 2PC-MPC imple-
mentation can be more easily integrated into various applications and systems, pro-
moting its adoption and reducing the risk of implementation errors.

Page 49 of 59

Part 5: Conclusions 5.3. Future Work

5.3.4 | State Machine Transition Analysis

The 2PC-MPC protocol involves multiple parties engaging in a sequence of steps
and transitions to perform secure multi-party computation. To further enhance the
protocol’s security and reliability, future work should include a detailed analysis of the
state machine transitions within the protocol.

This analysis should encompass:

m Formally defining the protocol’s state machine, including all possible states,
transitions, and conditions that trigger each transition.

m Verifying the correctness and completeness of the state machine, ensuring that
it accurately represents the protocol’s intended behavior and covers all possible
scenarios.

® Analyzing the state machine for potential vulnerabilities, such as race condi-
tions, deadlocks, or unhandled exceptions, that could compromise the proto-
col’s security or disrupt its execution.

m Validating the implementation’s adherence to the defined state machine, ensur-
ing that the code correctly implements the specified transitions and handles all
possible states and events.

By conducting a thorough state machine transition analysis, potential issues and vul-
nerabilities in the protocol’s design and implementation can be identified and ad-
dressed, enhancing its overall security and reliability.

5.3.5 | Understanding the Decentralized Party in a Protocol Setting

In this audit report, we have primarily focused on the interaction between two main
entities: the centralized party and the decentralized party. The centralized party is
treated as a single, unified entity, while the decentralized party is considered as a single,
virtually merged entity representing multiple participants. However, it is important
to acknowledge that this simplification may not fully capture the nuances and com-
plexities of the type of truly decentralized system that 2PC-MPC aims to facilitate.

In reality, the decentralized party consists of multiple individual parties, each with
their own unique characteristics, behaviors, and potential for change. These parties
may join or leave the system dynamically, merge with other parties, or undergo internal
changes that affect their roles and responsibilities within the protocol.

To gain a more comprehensive understanding of the 2PC-MPC protocol and its im-
plementation, future work should include an in-depth protocol analysis that treats
each virtually decentralized party as a distinct individual party. This analysis should
take into account the following considerations:

Page 50 of 59

Part 5: Conclusions 5.3. Future Work

m Party Composition: Examine the composition of the decentralized party, con-
sidering the number of individual parties involved, their roles, and their relation-
ships with each other. Analyze how the protocol handles the addition of new
parties, the removal of existing parties, and the potential for parties to merge or

split.

» Communication Patterns: Investigate the communication patterns among
the individual parties within the decentralized party. Analyze how messages are
exchanged, how consensus is reached, and how potential conflicts or disagree-
ments are resolved. Consider the impact of network latency, asynchronous
communication, and the possibility of malicious or faulty parties.

» KeyManagement: Explore the key management aspects of the protocol, focus-
ing on how cryptographic keys are generated, distributed, and managed among
the individual parties. Analyze the security implications of key sharing, key
rotation, and the potential for key compromise or leakage.

m Fault Tolerance: Assess the protocol’s resilience to failures or misbehavior of
individual parties within the decentralized party. Examine how the protocol
handles scenarios such as party disconnections, network partitions, or mali-
cious actions. Evaluate the protocol’s ability to maintain consistency, integrity,
and availability in the presence of faults.

m Scalability: Investigate the scalability aspects of the protocol, considering how
it performs as the number of individual parties within the decentralized party in-
creases. Analyze the impact of larger party counts on communication overhead,
computational complexity, and overall system performance.

m Privacy and Security: Assess the privacy and security guarantees provided by
the protocol when treating each virtually decentralized party as an individual
party. Analyze the potential for information leakage, collusion, or attacks that
may arise from the interactions among individual parties. Evaluate the effective-
ness of the protocol’s privacy-preserving mechanisms and the robustness of its
security properties.

5.3.6 | Performance and Scalability Testing

To assess the practical feasibility and scalability of the 2PC-MPC protocol, future
work should include comprehensive performance and scalability testing. This testing
should evaluate the protocol’s behavior and performance under various conditions,
such as different network latencies, varying numbers of participants, and increasing
computational workloads.

The performance and scalability testing should cover:

® Measuring the protocol’s throughput, latency, and resource utilization under
different network conditions and participant configurations.

Page 51 of 59

Part 5: Conclusions 5.3. Future Work

m Identifying performance bottlenecks and scalability limitations, such as net-
work bandwidth constraints or computational resource exhaustion.

m Evaluating the protocol’s ability to handle large-scale computations and data
volumes, assessing its suitability for real-world applications.

m Comparing the performance and scalability of the 2PC-MPC protocol against
other secure multi-party computation protocols or traditional centralized solu-
tions.

By conducting thorough performance and scalability testing, the strengths and limi-
tations of the 2PC-MPC protocol can be better understood, guiding future optimiza-
tions and improvements to enhance its practicality and adoption.

5.3.7 | Integration with Existing Systems and Frameworks

To facilitate the adoption and usage of the 2PC-MPC protocol, future work should
explore its integration with existing systems and frameworks commonly used in secure
computation and privacy-preserving applications.

This integration effort should include:

m Developing software development kits (SDKs) or libraries that provide high-
level abstractions and simplified interfaces for integrating the 2PC-MPC proto-
col into existing applications and systems.

m Providing comprehensive documentation, tutorials, and examples to guide de-
velopers in integrating the 2PC-MPC protocol into their projects and utilizing
its capabilities effectively.

By facilitating the integration of the 2PC-MPC protocol with existing systems and
frameworks, its adoption and usage can be greatly enhanced, enabling developers and
organizations to leverage secure multi-party computation in a wide range of applica-
tions and domains.

5.3.8 | Real-World Applications and Case Studies

To demonstrate the practical value and potential impact of the 2PC-MPC protocol,
future work should focus on exploring real-world applications and conducting case
studies in various domains.

Potential areas of application include:

m Privacy-preserving data analysis and machine learning, where sensitive data
from multiple parties can be analyzed and models can be trained without re-
vealing individual data points.

Page 52 of 59

Part 5: Conclusions 5.4. Acknowledgments

m Secure auctions and voting systems, where participants can engage in fair and
transparent bidding or voting processes without disclosing their individual pref-
erences.

m Collaborative financial computations, such as risk assessment or fraud detec-
tion, where financial institutions can jointly analyze data without sharing sensi-
tive customer information.

m Secure supply chain management, where multiple parties can collaborate and
optimize supply chain processes while preserving the confidentiality of their
proprietary data.

By conducting case studies and demonstrating the successful application of the 2PC-
MPC protocol in real-world scenarios, its practical feasibility, benefits, and potential
for widespread adoption can be clearly showcased.

The proposed future work outlined in this section aims to further enhance the security,
efficiency, usability, and practicality of the 2PC-MPC protocol and its Rust implemen-
tation. By addressing these areas, the protocol can be strengthened, optimized, and
positioned as a valuable tool for secure multi-party computation in various domains,
contributing to the advancement of privacy-preserving technologies and their real-
world impact.

5.4 | Acknowledgments

Symbolic Software would like to thank Erik Takke and Tomer Ashur from 3MI Labs
for their collaboration and support throughout the assessment process. We appreci-
ate their expertise, insights, and dedication to advancing the field of secure MPC. We
would also like to extend our sincere thanks to Yehonathan Cohen Scaly and Dolev
Mutzari of dWallet Labs for their valuable contributions and feedback on the assess-
ment findings. Their expertise and feedback have been instrumental in enhancing the
quality and accuracy of the assessment results.

Page 53 of 59

About Symbolic Software

Symbolic Software!, established in Paris, France in 2017, is a software
consultancy specializing in applied cryptography and software security.
The firm has executed over 300 cryptographic software audits within the
European information security sector and has made significant contri-
butions to the field by publishing peer-reviewed cryptographic research
software.

Oftering wide-ranging expertise in cryptographic software audits, Sym-

bolic Software has audited critical cryptographic components of global

platforms, ranging from password managers to cryptocurrencies. The
company has developed Verifpal® and Noise Explorer, innovative research software
for cryptographic engineering, which have contributed to peer-reviewed scientific
publications. Symbolic Software’s portfolio is marked by collaboration with leading
entities such as Cure53 and the Linux Foundation, and they have successfully audited
critical technologies like MetaMask and key COVID-19 contact tracing applications
in Europe.

!Stay updated on Symbolic Software’s latest work by visiting https://symbolic.sofware.

Page 54 of 59

https://symbolic.sofware

Bibliography

Ran Canetti et al. UC Non-Interactive, Proactive, Threshold ECDSA with Identi-
fiable Aborts. Cryptology ePrint Archive, Paper 2021/060. https://eprint.
iacr.org/2021/060.2021. DOI: 10.1145/3372297 .3423367. URL: https:
//eprint.iacr.org/2021/060.

Offir Friedman et al. 2PC-MPC: Emulating Two Party ECDSA in Large-Scale
MPC. Cryptology ePrint Archive, Paper 2024/253. https://eprint.iacr.
0rg/2024/253.2024. URL: https://eprint.iacr.org/2024/253.

Pascal Paillier. “Public-Key Cryptosystems Based on Composite Degree Resid-
uosity Classes.” In: Advances in Cryptology — EUROCRYPT '99. Ed. by Jacques
Stern. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp.223-238.15BN:
978-3-540-48910-8.

Ueli Maurer. “Unifying Zero-Knowledge Proofs of Knowledge.” In: Progress in
Cryptology — AFRICACRYPT 2009. Ed. by Bart Preneel. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 272-286. 1SBN: 978-3-642-02384-2.

Benedikt Biinz et al. “Bulletproofs: Short proofs for confidential transactions
and more.” In: 2018 IEEE symposium on security and privacy (SP). IEEE. 2018,
pp- 315-334.

Torben Pryds Pedersen. “Non-Interactive and Information-Theoretic Secure

Verifiable Secret Sharing.” In: Advances in Cryptology — CRYPTO '91. Ed. by

Joan Feigenbaum. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992, pp. 129-
140. 1sBN: 978-3-540-46766-3.

Merlin Rust Crate Documentation. https://docs.rs/merlin/latest/merlin/.
Accessed: 2024-05-28.

Zeroize Rust Crate Documentation. https : / /docs . rs / zeroize / latest /
zeroize/. Accessed: 2024-05-29.

Page 55 of 59

https://eprint.iacr.org/2021/060
https://eprint.iacr.org/2021/060
https://doi.org/10.1145/3372297.3423367
https://eprint.iacr.org/2021/060
https://eprint.iacr.org/2021/060
https://eprint.iacr.org/2024/253
https://eprint.iacr.org/2024/253
https://eprint.iacr.org/2024/253
https://docs.rs/merlin/latest/merlin/
https://docs.rs/zeroize/latest/zeroize/
https://docs.rs/zeroize/latest/zeroize/

Main Subprotocol Figures

Page 56 of 59

Part A: Main Subprotocol Figures

PROTOCOL 4 (Key-Generation ieygen: KeyGen(G, G, q))

The protocol is parameterized with the ECDSA group description (G, G, q). The
protocol interacts with n + 1 parties A, B, ..., By, where all parties hold pk as input.
The parties agree on a fresh sid and do as follows:

1. A’s first message:
(a) A samples a random x4 < Zgq and computes X4 =z4 - G.
(b) A sends (com—prove, pid 4, X;24) to F2- .

2. B;’s first message:

(a) Each B; receives (receipt, pid,) from F-oL

(b) Each B; samples a random z; < Zq and computes X; = z; - G.

(c) Only on first execution: Each B; sends (keygen,sid) to Franue and
wait for the functionality’s response. If the functionality responds with
(pubkey,sid, L, U’ N U) then output U’ N U and abort; otherwise, if the
functionality responds with (pubkey, sid, pk) then continue.

(d) Each B; computes ct; = AHE.Enc(pk, x;; p;) for a randomly chosen p;.

(e) Each B; sends (prove,sid, pid,, X;, ct;; zi, p;) to fi:’fgt.

(f) Each B; receives (proof,sid, Xg, ctkey) from .Falég'fgt, if not, it receives and
outputs the set of corrupted parties and aborts.

3. A’s second message:

(a) A receives (proof,sid, Xp, ctiey) from .Faléz'f[;k. Note that A implicitly receives
pk as well, as it is part of the public parameters of language LgncpL -

(b) A sends (certify, pk) to Frane and waits for its response. If the response is 1
then continue, otherwise abort.

(c) A sends (decom—proof, pid ;) to FZ2-

4. B;’s verification.
(a) Each B; receives (decom—proof, pid 4, X 4) from ‘Fcl;)s:-—zh if not, it aborts.
5. Output.
— A outputs X = X4 + Xp and record (keygen, X, X, Ctyey, pk).
— Each B; outputs X = X4 + Xp and record (keygen, X4, X, ctiey, pk).

Figure A.1: “Protocol 4” in the 2PC-MPC paper [2] covers the DKG key genera-
tion step.

Page 57 of 59

Part A: Main Subprotocol Figures

PROTOCOL 5 (Presigning Ipes: Presign (G, G, q), sid))

The protocol interacts with A, Bi,..., B, where everyone has pk and ctiey, as input.
Before proceeding, all parties verify that sid has never been used before. Then they do
as follows:

1. A’s message:
(a) A samples a random k4 <+ Z, and computes K4 = Com(ka; p1).
(b) A sends (prove,sid, pid 4, Ka;ka,p1) to]—'ZLkD“"“.
2. B;’s message:
(a) Fz'rst round:
. B receives (proof,sid, pid ,, K4) from _7-'LDC°'“, if not, it aborts.
. Bj samples k; « Z3 and computes R; = k; - G. Denote kp = >k
111 B Samples ’YL [0 q) nmasklvnmaskzvnmask3’nmask4 S Rpka and Computes
A. Ctl = AHE. Enc(pka’yﬂnmaskl)a
B. cty = AHE.Eval(pk;, fi, Ctiey; nmast) where fi(z) =7 -z
C. cti = AHE.Enc(pk, kb,nmash)

WA

)
i i i Lencoh [Pk ;Ctie]
’ pldi7 Ctl } Cté; Yi, n:naskp n:naskz) to -F agg—zk Y
: . I

v. B; sends (prove,sid, pid;, R:, ct3; ki, Mmask;) t0 Fppe'ok -
(b) Second round:

. . . LgncDH [Pk Ctie

i. B; receives (proof,sid||“y”,cti,ct2) from F, " oulpk-ctal ond

agg—zk
; LencpL
(proof,sid, R, ct3) from F age k-

ii. Otherwise, if B; receives (malicious,sid, U’) from F,

iv. B; sends (prove,sid||“y

LEncDH [Pk, Ctiey]

agg—zk
(malicious, sid, U") from]—'ngnc'ik, it records the malicious parties (M
and/or M') and aborts.

iii. B; computes cty = AHE.Eval(pk, f/, cty; 77rinask4) where fi(x) =k; - .

Lencon[pk.ct1]
agg—zk

and/or

iv. B; sends (prove, sid||“k”, pid,, ct}, cty; ki, nﬁqaskynﬁmk“) to F,
(c) Proof verification:

. . L ket N

B; receives (proof,sid| “k”,cts, cts) from .ng"c'if[p eti], Otherwise, if B;
Lencon[pkicta]

]:' ncl ,

otk it records the malicious

receives (malicious,sid,U’) from
parties and aborts.
3. A’s verification
(a) A receives (proof,sid, Rp,ct3) from]—'Lg?‘cgt, if not, it aborts.
LgncpH [Pk Ctiey]

(b) A receives (proof, sid, cti, ct2) from F,_ "

4. Output
(a) A records (presign,sid, Rp, cti, cta; ka, p1), where ct; and ctz are encryptions
of yand v - zp.
(b) B; records (presign,sid, R, Ka, ct1, cta, cta), where cts encrypts v-kg mod q.

, if not, it aborts.

Figure A.2: “Protocol 5” in the 2PC-MPC paper [2] covers the presigning step.

Page 58 of 59

Part A: Main Subprotocol Figures

PROTOCOL 6 (Signing Isgn: Sign ((G, G, q), sid, msg))

1. A’s message:
(a) A computes R = (k:A)_1 -Rp(= k;lkg -G) and r = R|z—azis mod g; denote
k=k,'kp.
(b) A samples p2 € Rpp and computes Ua = Com(ka - za; p2).
(c) Asetsar =7 -ka-za+m-ka and az =7 -ka.
(d) A homomorphically evaluates cty,ctz, on its private function fa(z1,z2) :=
ai1r1 + a2x2:
— cta + AHE.Eval(pk, fa, cty, cta; Teval)
(e) A sends the following proofs:
— A sends (prove,sid, pid 4, K4, Rp; ka, p1) to F,
- A sends (prove, sid pldA,KA,UA,XA,kA,xA,pl,pg) to
]:'ZLI;DComRalio PP, (G, Ga)]
— A computes C1 = (r©@Ua) ® (m® K4) and C2 =7 ® K4, and sends

(prove,sid, pid 4, cta, C1,C2;a1,a2,7 - p2 + m - p1,r - p1,m) to

FLocomEval [pp.pk,cty,ctz]
zk .

2. B;’s verification and output:
(a) B receives the following proofs, otherwise, it aborts.
— (proof,sid||pid 4, K4, Rp) from _7-'LDC°"‘DL P (G Ro)]
— (proof, sid||pid 4, Ka,Ua, X4a) from]’iDCmRmm[pMG Gl
— (proof, sid||pid ,, cta, C1, Cs) from FoComew[PP-pk.cticta]

(b) B; verifies that the values used in the proofs are consistent with values obtained
previously by B, specifically:

— There are records (keygen, X, X, ctiey, pk) and (presign,sid, Rg, K4, pt’),
and
—Ci=(roUa)®d(mo Ka) and Co =r® Ka, where 1 = R|o—awis-

(¢) B; sends (decrypt,pk,cta) and (decrypt,pk,cts) to Franwe and waits
for its response. Let the responses be (decrypted,pk,cta,pt,,Ua) and
(decrypted, pk, cta, pty, Us) respectively; if pt, = L or pt, = L then output
Ua U U, and abort; otherwise compute s’ = pt; ! - pt, mod g (which is equal
to (ykg) ' ((rkaxa + mka)y + rkayxp) = k' (rz+m) mod q as required)
and output s = min{s’, ¢ — s’} (to ensure uniqueness of the signature).

3. Output: B; outputs o = (r, s).

LocompL[pp, (G, R,9)]

Figure A.3: “Protocol 6” in the 2PC-MPC paper [2] covers the generation of the
actual decentralized signature.

Page 59 of 59

	Executive Summary
	About This Audit
	What Was Audited
	About the Functional Correctness Assessment
	About the Security Assessment
	Summary of Conclusions

	Target Overview
	2PC-MPC Crate
	Main Subprotocols
	Distributed Key Generation
	Presign
	Sign

	Understanding the Decentralized Party in a Protocol Setting

	2PC-MPC Accompanying Paper
	Underlying Crates

	Functional Correctness Assessment
	DKG Subprotocol
	Centralized Party Public Key Share Commitment
	Sampling the Secret Key Share
	Public Key Share Derivation
	Commitment to the Public Key Share
	Generation of Zero-Knowledge Proof
	Centralized Party Public Key Share Commitment

	Initialization and Encryption of Secret Key Share
	Preparation for Decentralized Proof Verification
	Decommitment and Verification of Public Key Shares
	Decentralized Party Decommitment Proof Verification Round

	Presign Subprotocol
	Step 1: Centralized Party Preparation
	Nonce Generation
	Commitment Generation
	Proof Construction

	Step 2a: Decentralized Party Nonce and Mask Generation
	Verification of Commitments
	Sampling of Masks and Nonce Shares

	Step 2a: Decentralized Party Mask Encryption
	Step 2b: Initialize Proof Aggregation
	Step 3: Centralized Party Verification of Presign Output
	Input Validation
	Decryption and Verification of Encrypted Data
	Verification of Range Proofs
	Handling of Nonce Public Shares
	Final Output Construction

	Sign Subprotocol
	Step 1: Centralized Party Signature and Proof Setup
	Step 2: Decentralized Party Proof Verification and Signature Setup
	Steps 2a, 2b: Signature Partial Decryption Round
	Step 2c: Signature Threshold Decryption Round

	Security Assessment
	DW-01-001 Nonce Reuse in Decentralized Party Presigning Step
	DW-01-002 Insufficient Checks on ComputationalSecuritySizedNumber Type
	DW-01-003 No Zeroization of Secrets in Memory

	Conclusions
	Summary of Core Assessments
	Note on Target Code Complexity
	Future Work
	In-Depth Cryptographic Review
	Cryptographic Optimizations
	Protocol API Correctness and Usability
	State Machine Transition Analysis
	Understanding the Decentralized Party in a Protocol Setting
	Performance and Scalability Testing
	Integration with Existing Systems and Frameworks
	Real-World Applications and Case Studies

	Acknowledgments

	About Symbolic Software
	Bibliography
	Main Subprotocol Figures

